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Introduction 
Thyroid hormone and adenosine monophos-
phate-activated protein kinase (AMPK) are 2 
major determinants of energy balance. Thy-
roid hormone is known to be a key factor 
that stimulates energy use in energy bal-
ance. It is involved in almost every stage of 
energy use. The uptake of energy sub-
stances into the cell, their conversion to 

adenosine triphosphate (ATP) in the mito-
chondria, and the use of ATP in all cellular 
processes where energy is required are 
under the stimulating control of tri-iodothy-
ronine and partially 3,5-diiodo-L-thyronine. 
A deficiency in thyroid hormone production 
results in ineffective utilization of energy 
substrates in the cell, despite their sufficient 
level. A well-known example of this condi-

An increase in the adenosine monophosphate (AMP)/ade-
nosine triphosphate ratio activates AMP-activated protein 
kinase (AMPK), leading to inhibition of the mammalian tar-
get of rapamycin signaling pathway that is associated with 
autophagy, mitochondriogenesis, glucose uptake, mRNA 
stabilization, and cell cycle regulation. Metformin activates 
AMPK and inhibits mitochondrial oxidative phosphorylation. 
Currently, there is an increasing interest in investigating the 
effects of metformin on thyroid diseases. Recent data show 
an association between metformin treatment and lower in-
cidence of thyroid cancer, better survival of patients with 
thyroid cancer, and lower thyroid volume and nodule size. 
Insulin-like growth factor receptor and AKT pathways are 
the AMPK-independent mechanisms through which metfor-
min acts on thyroid diseases. Although metformin has a 
promising role in adjuvant therapy for thyroid cancers, well-
designed prospective trials are required before reaching a 
final decision. 
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Artan adenozin monofosfat (AMP)/adenozin trifosfat oranı, 
AMP ile aktive olan protein kinazı (AMPK) aktive ederek; 
otofaji, mitokondriogenez, glukoz alımının artması, mRNA 
ve hücre döngüsünün stabilizasyonuyla sonuçlanan memeli 
hedefi rapamisin sinyal yolağının inhibisyonuna neden olur. 
Metformin, AMPK’yi aktive; mitokondriyal oksidatif fosfori-
lasyonunu ise inhibe eder. Metforminin, tiroid hastalıkları 
üzerindeki etkisinin araştırılmasına artan bir ilgi vardır. Son 
veriler, metformine maruz kalma ile daha düşük tiroid kan-
seri insidansı, daha iyi tiroid kanseri sağkalımı, daha düşük 
tiroid hacmi ve nodül boyutu arasında bir ilişki olduğunu 
göstermektedir. Metformin, AMP kinaz yolağı dışında insülin 
benzeri büyüme faktörü ve AKT yolaklarını da kullanarak ti-
roid hastalıkları üzerinde etkili olur. Metforminin, tiroid kan-
serleri için adjuvan tedavide umut verici bir rolü vardır, 
ancak nihai bir karara varmadan önce iyi tasarlanmış pros-
pektif çalışmalara ihtiyaç vardır. 
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tion is severe hypothyroidism or myxedema 
coma. On the other hand, if there is an en-
ergy insufficiency, the cell needs to conserve 
energy. Energy conservation is achieved by 
restricting some cellular functions that are 
not vital. This critical function is carried out 
by the AMPK enzyme in the cell. Therefore, 
the physiological function of AMPK activity is 
equally important (1,2). 
As described above, there is a complete con-
trast between the functions of thyroid hor-
mone and AMPK in cells. To evaluate this 
aspect better, it is useful to study AMPK in 
more detail. In this context, we should also 
investigate the role of the mammalian tar-
get of rapamycin complex 1 (mTORC1) 
pathway.  

The mTORC1 Pathway 
The mTORC1 pathway is an important path-
way in cellular function. The mTORC1 path-
way is at the junction of many other 
signaling pathways. The tuberous sclerosis 
system [tuberous sclerosis complex 1 
(TSC1) and TSC2] suppresses mTORC1, and 
phosphorylation of this system leads to the 
activation of mTORC1. mTORC1 plays a  
direct or indirect role in cell growth and pro-
liferation, fat and protein synthesis, au-
tophagy control (predominantly reduction of 
autophagy), and cell energy utilization. 
Thus, the function of mTORC1 is to keep the 
cells active and alive. This process requires 
ATP consumption. The carcinogenic effect 
originating from excessive and continuous 
stimulation following mutation of some sig-
naling proteins in the mTORC1 pathway is 
well known (3). 

The AMPK Pathway 
AMPK is an important enzyme that is acti-
vated when ATP levels decrease because of 
excessive use of ATP and an increase in the 
AMP/ATP ratio. The activated AMPK signifi-
cantly restricts energy use and also induces 
energy recovery pathways in the cell. When 
AMPK is activated, it suppresses the 
mTORC1 pathway. In other words, it exerts 
an antitumorigenic effect. AMPK activation 
also increases autophagy, mitochondriogen-
esis, glucose uptake, and stabilization of 
mRNA and cell cycle (Figure 1) (4,5). 
AMPK consists of alpha, beta, and gam 
ma subunits. The activation of AMPK is 

mainly driven by phosphorylation of the 
amino acid residue threonine-172 (Thr-
172) in the alpha subunit (1). Many com-
pounds stimulate AMPK activation by direct 
and indirect phosphorylation of Thr-172 
(Figure 2). Because hunger and hypoxia 
will negatively affect ATP synthesis, exces-
sive muscle movements will consume an 
excess amount of ATP; consequently, the 
AMP/ATP ratio will increase and phospho-
rylate AMPK. Apart from the AMP/ATP ratio, 
calcium/calmodulin-dependent protein ki-
nase kinase-1, liver kinase-B1, metformin, 
thiazolidinedione, resveratrol, quercetin, 
and sirtuin are some of the other com-
pounds that increase AMPK activity. 5-
Aminoimidazole-4-carboxamide riboside 
(AICAR) is a direct AMPK stimulant that is 
widely used in AMPK-related research. Thy-
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Figure 1. AMPK directly and indirectly (dephosphorylation 
of TSC1/TSC2) inhibits the mTORC1 pathway and shows 
antitumorigenic and energy restrictive effects. It also in-
duces autophagy, mitochondriogenesis, glucose uptake, 
and stabilization of mRNA and cell cycle.  
AMPK: Adenosine monophosphate-activated protein kinase; 
TSC: Tuberous sclerosis complex; mTORC1: Mammalian target 
of rapamycin complex 1; ATP: Adenosine triphosphate.

Figure 2. In addition to the increase in the AMP/ATP ratio, 
many pathways and drugs activate AMPK by phosphorylat-
ing the alpha subunit. T3 also activates AMPK directly or by 
increasing the use of ATP.  
AMPK: Adenosine monophosphate-activated protein kinase; ATP: 
Adenosine triphosphate; LKB1: Liver kinase-B1; CAMKKβ: Cal-
cium/ calmodulin-dependent protein kinase kinase β; T3: Thyroid 
hormone; AICAR: 5-Aminoimidazole-4-carboxamide riboside.

Drugs 
- Metformin 
- Resveratrol 
- Quercetin  
- Aicar 
- Sirtuin 
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roid hormone (T3) activates AMPK directly 
or indirectly by increasing the AMP/ATP 
ratio (4,5). 

Thyroid diseases and the AMPK Pathway 
An increased level of AMPK activation in thy-
rocytes stimulates glucose uptake by acti-
vating glucose transporter 1 and decreases 
iodine uptake by suppressing the function 
and transcription of Na/I symporter (Figure 
3). It also inhibits the proliferative effect of 
thyroid-stimulating hormone (TSH) on thy-
rocytes. This relationship is mutually bal-
anced by the inhibitory effect of TSH on 
AMPK activation (6,7). 
TSH and insulin resistance: Both insulin and 
insulin-like growth factor stimulate the pro-
liferation of thyroid cells and are associated 
with the pathogenesis of thyroid nodule de-
velopment. AMPK activity counteracts TSH 
activity and decreases insulin resistance, 
which is related to the decrease in thyroid 
gland size and nodule volume (8,9). 
AMPK activity has been shown to increase 
the incidence of thyroid malignancies 
(10,11). The extent of increase is also re-
lated to the aggressiveness of the malig-
nancy. Cancer cells need a high amount of 
energy for rapid growth and proliferation. 
This energy is mainly supplied by glucose, 
and an increase in AMPK activity leads to 
high glucose levels in cancer cells. 
However, if AMPK is overactivated, it shows 
an antiproliferative effect by suppressing 
the mTORC1 pathway. Many studies have 
also shown that AMPK inhibits the cell cycle 

b y  

stabilizing the expression of the p53 gene. A 
strong antiproliferative effect of AMPK acti-
vation with AICAR application has been 
demonstrated in many cancers, including 
breast cancer (6). Continuous PI3K activa-
tion has been shown to occur in PTEN mu-
tant mice; this results in a continuous 
decrease in the mitochondrial respiratory 
capacity, and the AMPK activity remains 
proportionally low. Mutant mice were later 
found to develop thyroid follicular adenoma 
and thyroid follicular cancers (known as 
Cowden syndrome in humans). When 
AICAR was administered to mutant mice, a 
significant reduction in tumor progression 
was observed as compared to that in con-
trols (6). 

Metformin and Thyroid Disease  
In 2 retrospective studies, metformin intake 
was found to be associated with a lower in-
cidence risk of thyroid cancer. These protec-
tive effects of metformin were more 
pronounced in patients who were taking 
metformin for a longer period and therefore 
had a higher cumulative dose of metformin 
(12,13). Klubo-Gwiezdzinska et al. found 
that patients with diabetes who were being 
treated with metformin had smaller tumor 
size and less incidence of extra-thyroid in-
vasion and distant metastasis than non-
metformin-treated patients with diabetes 
and non-diabetic patients with thyroid can-
cer (14). In a recent study, metformin re-
duced the tumor growth of thyroid cancer in 
the metastatic niche of bone by inhibiting 
osteoblastic receptor activator of nuclear 
factor kappa-Β ligand production in anaplas-
tic thyroid cancer cell lines (15). 
Antitumorigenic effects of metformin were 
mainly associated with the activation of the 
AMPK pathway. AMPK stimulation by met-
formin is more pronounced in aggressive 
types of thyroid tumors. Metformin was 
found to dose-dependently suppress the 
growth and migration of cancer cells in an 
anaplastic cell line (16). In the doxorubicin-
resistant HTh74R anaplastic cell line, met-
formin markedly decreased growth 
stimulation signaling and showed an addi-
tive antimitogenic effect with sorafenib 
(17). 
In addition to mTOR inhibition, AMPK acti-
vation inhibits the phosphorylation of  
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Figure 3. AMPK decreases iodine uptake in thyrocytes by 
decreasing the function and expression of Na/I symporter. 
It also stimulates glucose uptake by increasing glucose 
transporter 1 expression.  
AMPK: Adenosine monophosphate-activated protein kinase; 
TSH: Thyroid-stimulating hormone; GLUT1: Glucose trans-
porter 1.



insulin receptor substrate-1 (IRS-1) 
. IRS-1 transmits signals from insulin-like 
growth factor 1 receptor to the PI3K/AKT 
pathway, which is responsible for the mito-
genic effect of insulin (18). Metformin also 
inhibits mitochondrial glycerophosphate 
dehydrogenase (mGPDH), which plays a 
role in glycolysis and oxidative phosphory-
lation. The inhibition of mGPDH activity 
negatively affects thyroid cancer cell 
growth by reducing oxidative phosphoryla-
tion (19).  
Despite these results, metformin is still not 
recommended for thyroid cancer treatment 
in clinical practice. The use of metformin 
might not be necessary because most thy-
roid cancers (90%) are nonaggressive. 
Some authors, however, suggest the use of 
metformin for treating the tall cell, poorly 
differentiated, and anaplastic thyroid cancer 
(8). Because metformin intake causes a de-
crease in iodine uptake, care should be 
taken for differentiated cancers, which 
should be treated with radioiodine or 
through an I131 whole body scan.  
Another thyroid disease group that can be 
discussed in the context of AMPK and met-
formin use is nodular goiter. In subjects 
with Type 2 diabetes mellitus (DM) and in-
sulin resistance, metformin therapy is 
shown to be associated with smaller thyroid 
volume, decrease in the number of nodules 
and nodule size, and lower serum TSH level 
(20-23). In addition to the activation of 
AMPK, metformin antagonizes the growth 
stimulatory effect of insulin and decreases 
TSH level, which inhibits tumor proliferation 
in the thyroid gland (8). In a group where 
metformin treatment was initiated due to 
insulin resistance, it was found that the 
nodule volume (as measured by ultra-
sound) decreased by 30% after 6 months 
of treatment as compared to the initial val-
ues (20). Metformin suppresses TSH levels 
by changing the affinity and activity of cen-
tral thyroid hormone receptors. An increase 
in central dopaminergic tone is another 
mechanism through which metformin en-
hances the suppressive effect of thyroid 
hormones on TSH levels (24-26). Met-
formin treatment was found to be associ-
ated with a decrease in serum TSH levels 
only in those patients with TSH>2.5-2.95 
µU/mL (27,28). 

Conclusion 
Despite all the positive data, if there is no 
indication for using metformin for Type 2 
DM or insulin resistance, then metformin 
should not be recommended for treating 
diffuse goiter. For thyroid malignancies, 
there is currently no recommendation in 
guidelines to use metformin as an AMPK ac-
tivator. The suppressive effect of metformin 
on TSH levels must be considered for pa-
tients undergoing levothyroxine 4 (LT4) 
therapy, as false dose reduction may cause 
symptoms of hypothyroidism due to an in-
terruption in demand of LT4 in peripheral 
tissues. 
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