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Metabolomics of T2DM and Its Complications

Kek et al.

Metabolite Biomarkers and Predictive Model Analysis 
for Patients with Type 2 Diabetes Mellitus With and 
Without Complications

ABSTRACT

Objective: Understanding the pathogenesis of type 2 diabetes mellitus including the interaction 
between the inherent susceptibility, lifestyles, and environment is believed to cast hope to predict, 
prevent, and personalize cure for type 2 diabetes mellitus and its complications. To identify the differ-
entially expressed metabolites as potential diabetes-associated metabolite biomarkers that identify 
individuals with and without diabetes. 

Methods: Sixty-four subjects were recruited to identify the systemic metabolic changes and biomark-
ers related to type 2 diabetes mellitus, and the related complications (ischemic heart disease and 
chronic kidney disease) using quadrupole time-of-flight liquid chromatography coupled to mass 
spectrometry. The top 5 biomarkers were identified, and the prediction accuracies for models devel-
oped by 4 algorithms were compared. 

Result: Tyrosine, tryptophan, glycerophospholipid, porphyrin and chlorophyll, sphingolipid metabo-
lism, and glyco​sylph​ospha​tidyl​inosi​tol-a​nchor​ biosynthesis were the lipids and amino acid-related 
pathways differentially regulated in the type 2 diabetes mellitus patients compared to normal sub-
jects and patients with complications. Hydroxyprolyl-leucine and N-palmitoyl threonine were higher 
in patients; 4,4ʹ-​Thiob​is-2-​butan​one, geran​yl-hy​droxy​benzo​ate, and Sesamex were higher in patients 
with chronic kidney disease complications; Asp Glu Trp, Trp Met Met were higher in patients with 
type 2 diabetes mellitus and ischemic heart disease compared to those normal subjects without risk. 
Random forest produced a consistently higher accuracy of more than 70% in the prediction for all 
the comparison groups. Pathways perturbated and biomarkers differentially regulated in individuals 
with risks or with the existing conditions of type 2 diabetes mellitus and its complications of ischemic 
heart disease and chronic kidney disease were identified using time-of-flight liquid chromatography 
coupled to mass spectrometry. 

Conclusion: Metabolomics is a new emerging field that provides comprehensive phenotypic infor-
mation on the disease and drug response of a patient. It serves as a potential comprehensive thera-
peutic drug monitoring approach to be adopted in the near future for pharmaceutical care.

Keywords: Type 2 diabetes mellitus (T2DM), LCMS-QTOF, metabolomics, ischemic heart diseases 
(IHD), chronic kidney diseases (CKD)

Introduction

The occurrence of diabetes mellitus (DM) among the adult population is rising globally.1,2 
According to the Diabetes Atlas from the International Diabetes Federation, a total of 415 mil-
lion adults had diabetes globally in 2014, and there will be approximately 780 million people 
suffering from diabetes, by 2045.3 Type 2 diabetes mellitus (T2DM) has become a pandemic 
globally and the complications and mortality rates will continue to rise due to a lack of pre-
cise strategies for diagnosis and treatment.

The number of patients with T2DM that had progressed toward different complications had 
increased. The complications include both macrovascular and microvascular disorders which 
include diabetic nephropathy, diabetic peripheral neuropathy, diabetic retinopathy, and 
ischemic heart disease (IHD).2 Nephropathy leading to chronic kidney failure (CKD) and IHD 
are the most common diabetic-related complications among the adult population.4

As the morbidity and mortality due to diabetes are projected to increase due to the increas-
ing elderly population and sedentary lifestyles, identifying patients with a high risk of T2DM 
and the complications at an early stage are important strategies based on precision health. 
Conventional clinical and biochemical markers, such as body mass index (BMI), fasting plasma 
glucose, oral glucose tolerance test, and glycated hemoglobin, are well-established predic-
tors to monitor the glycemic status in diabetic patients but remain imperfect in providing 
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clues with respect to pre-diabetes and the development of compli-
cations due to diabetes. Novel approaches are important to advance 
the understanding of the mechanisms of diabetes development and 
to identify more precise and early biomarkers.

Metabolomics is a global approach in studying biological systems 
that has been used for the identification and quantification of metab-
olites in biological samples. This approach offers a new alternative 
way of identifying novel biomarkers by evaluating the large numbers 
of metabolites that are substrates and products in metabolic path-
ways.4,5 Recent metabolomics studies have suggested that certain 
metabolites and metabolite classes may be associated with the risk 
of obesity, insulin resistance, and type 2 diabetes.6

In this study, we used an untargeted metabolomics platform with 
quadrupole time-of-flight liquid chromatography coupled to mass 
spectrometry (QTOF-LC/MS) to profile the metabolite compounds in 
the serum samples and investigate the differences in the metabo-
lome between patients with T2DM complicated with either IHD or 
CKD vs. those without T2DM, IHD, CKD, and non-diabetic. We aimed 
to identify the differentially expressed metabolites as potential 
diabetes-associated metabolite biomarkers that identify individu-
als with and without diabetes. In addition, we aimed to identify the 
metabolic pathways associated with T2DM and its complications. 
These findings will help us to better understand the development of 
diabetes and could assist in identifying new molecular targets for the 
treatment of the disease.

Material and Methods

Study Subject
The protocol of the study was reviewed and approved by the Human 
Research Ethics Committee of of Universiti Teknologi MARA (UiTM) 
(Protocol Number: REC/377/16; Date: 22 December 2016). The pro-
tocol followed good clinical practice and the Declaration of Helsinki 
strictly. All the subjects were explained about the study objectives 
and procedures before participation. Blood samples were obtained 
after written informed consent was obtained.

A total of 64 subjects composed of 16 subjects without T2DM, 16 
patients with T2DM, 16 patients with T2DM and IHD, and 16 patients 
with T2DM and CKD were recruited from the UiTM Specialist Centre, 
Sungai Buloh Selangor. The total number of subjects was estimated 
based on the assumptions of a medium effect size of 0.5, SD of 1.5, 
aim for a statistical power of 80%, and significant level at .05.

The subjects defined as normal comprised of 2 groups. One group is 
healthy subjects (n = 8) without family risk and have no symptoms of 
T2DM, age > 30 years with BMI < 23 kg/m2. Another group is healthy, 
non-T2DM subjects with a family history of T2DM; history of gesta-
tional DM; metabolic syndrome (BMI > 23 kg/m2) (n = 8). The healthy 
subjects were considered normal and were excluded if they were 
diagnosed with T2DM and underlying malignancy.

Patients diagnosed with T2DM were on anti-diabetic therapy within 
the past 3 months. Patients with a previous history of ischemic heart 
disease, including any cardiac or coronary intervention, acute coro-
nary syndrome, or myocardial infarction were classified as patients 
with T2DM and IHD. Patients with proteinuria or abnormal estimated 
glomerular filtration rate of between 30 and 60 mL/min/1.73 m2 were 
labeled as T2DM and CKD. The patients were excluded if they had 
acute illness, recent hospital admission within 6 weeks, and underly-
ing malignancy.

Sample Preparation
The samples were frozen immediately after collection and thawed 
just prior to preparations to minimize metabolite degradation. 
Sample purification was carried out on ice using a modified protein 
precipitation protocol by Wang et  al.7 Deproteinization was per-
formed by adding 450 μL cold methanol and 150 μL cold deionized 
water into 150 μL of each serum sample. The samples were vortexed 
at maximum speed for 30 seconds and centrifuged at 14700 × g 
for 10 minutes at 4°C. Subsequently, 650 μL of the supernatant was 
transferred into a new microcentrifuge tube, and the deproteiniza-
tion steps were repeated once. A total of 1000 μL of the supernatant 
from the 2 deproteinization steps were dried using a vacuum con-
centrator (5301, Brinkmann, Eppendorf ). The dried samples were 
stored at −80°C until analysis.

Untargeted Metabolomics Using Quadrupole Time-of-Flight 
Liquid Chromatography Coupled to Mass Spectrometry
The vacuum-dried samples were reconstituted with 30 μL of the 
mobile phase (A 50% dH2O: B 50% ACN). Two microliters of the 
samples were injected and analyzed by LC/MS-QTOF (6520 Agilent 
Technologies, Santa Clara, Calif, USA) using a ZORBAX Eclipse Plus 
C18 column (100 mm × 2.1 mm ×1.8 μm, Agilent Technologies) main-
tained at 40°C. The system was operated with a flow rate of 0.25 mL/
min with mobile phase A (water with 0.1% formic acid) and mobile 
phase B (acetonitrile with 0.1% formic acid). A linear gradient over 18 
minutes from 5% to 95% of mobile phase B was used, with 95% of 
mobile phase B maintained over 12 minutes of post-run. Electrospray 
ionization (ESI) source settings were set as follows: V Cap 4000 V, 
skimmer voltage 68 V, and fragment 215 V. The nebulizer was set at 
20 psi, and the flow rate and the temperature of the nitrogen dry-
ing gas were maintained at 12 L/min and 350°C, respectively. Data 
were collected by a full scan positive ESI mode from 50 to 1000 m/z. 
During the analysis, 2 reference masses of 121.0509 m/z (C5H4N4) 
and 922.0098 m/z (C18H18O6N3P3F24) were continuously injected 
to allow consistent, accurate mass correction.

The accuracy and reproducibility of the analytical method were mea-
sured by injecting quality control (QC) samples for each batch of 
the sample analyses. The QC samples were prepared by pooling the 
aliquots of all the samples analyzed. One QC sample was analyzed 
for each batch of serum samples. The QC samples were injected at 
the beginning, middle, and end of the run to ensure the system per-
formance and assay reproducibility. Evaluation of the QC was done 

MAIN POINTS
•	 Lipids and amino acid pathways were differentially regulated in 

type 2 diabetes mellitus (T2DM) patients compared to normal 
subjects and patients with complications.

•	 Hydroxyprolyl-leucine and N-palmitoyl threonine were higher 
in patients.

•	 4,4ʹ-​Thiob​is-2-​butan​one, geran​yl-hy​droxy​benzo​ate, and Sesamex 
were higher in patients with chronic kidney disease complications.

•	 Asp Glu Trp, Trp Met Met were higher in patients with T2DM 
and ischemic heart disease compared to those normal subjects 
without risk.

•	 Random forest produced a consistently higher accuracy of 
more than 70% in the prediction of T2DM and its complication.
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by calculating the distribution of relative standard deviation (RSD) 
of metabolites that are consistently present in 80% of the pooled 
samples. Metabolites within the range of m/z and retention time 
covered in the analysis were chosen to represent the QC. The data 
of QC samples were compared against the data of subject’s samples 
by treating them as a separate group and processing them using the 
same parameters selected for processing the whole sample set. In 
addition, a Principal Component Analysis (PCA plot) was generated 
using data from QC samples and subject samples

Data Processing
Agilent MassHunter Qualitative Software from Agilent Technologies 
was used for metabolite extraction and data mining. For the positive 
ionization mode, the adducts used were H+ and Na+. Several param-
eters were set to select the molecular features. The chromatogram 
and spectra were observed to determine the reproducibility of the 
results. Metabolites detected within 0.100-18.000 minutes of the 
analysis, within 50-1000 m/z were identified. The metabolites data 
were then processed using “Find Compound” by “Search Database” 
algorithm parameters. All the data from (.d) files were converted to 
the (.cef ) file using DA Reprocessor (Agilent Technologies) software 
and then further analyzed using Mass Profiler Professional (MPP) 
(Agilent Technologies) software. The data were subjected to normal-
ization, filtration, and recursion analysis.

Statistical Analysis
The data were filtered using “Filter by Frequency” and “Filter by Flags” 
analysis, which was set to 50% to ensure the identified compounds 
were detected in at least 50% of all the technical replicates of the bio-
logical samples. Filtering was further done by analysis of variance to 
select compounds that were significantly differentiated between the 
subjects without T2DM and patients with T2DM only, and patients 
with T2DM and complications. The compounds with P-value and fold 
change (FC) cut-off scores of .05 and 2.0, respectively, were filtered 
to determine the differentially expressed metabolites. All the metab-
olites were identified using the ID browser packed with the Metlin 
database of the MPP software. Kyoto Encyclopedia of Genes and 
Genomes and Human Metabolome Database and PubChem were 
used to confirm the identities of the metabolites.8,9 The metabolites 
were then transferred into the entity list and exported to visualize 
using MetaboAnalyst web-based tools. The data were re-examined 
by recursion analysis. The identified compounds from recursion anal-
ysis were subjected again for filtering using “Filter by Frequency” and 
“Filter by Flags” analysis. The differential analysis was done using MPP 
software. All the statistical analyses were done using MetaboAnalyst 
5.0 (https​://ww​w.met​aboan​alyst​.ca/)​ (McGill University, Quebec, 
Canada).

Pathways Analyses
The PCA and orthogonal partial least square discriminant analysis 
(OPLS-DA) were performed to illustrate the different metabolic pro-
files among the 4 groups of subjects. Additional comparisons were 
conducted between normal subjects without family risk to other 
patients with T2DM and other complication, normal subjects with 
family risks and other patients’ groups.

The metabolic pathways were determined using MetaboAnalyst 5.0 
web-based tool (https​://ww​w.met​aboan​alyst​.ca/)​. MetaboAnalyst 
was also used for potential biomarker identification. Metabolites 
from the biological pathways were assessed for their potential as 
biomarkers for T2DM and its complications.

Biomarker Analysis
Biomarker analyses were performed using MetaboAnalyst 5.0 (https​
://ww​w.met​aboan​alyst​.ca/)​. Five steps were conducted which 
included data uploading, data processing, biomarker selection, per-
formance evaluation, and model creation. The data were first sub-
jected to receiver operation characteristic (ROC) curve analysis for 
individual biomarkers, followed by manually selecting a subset of 
features/samples for ROC analysis and the third part of the analysis 
was done using Multivariate Exploratory ROC Analysis.

Receiver Operation Characteristic Curve Analysis for Individual 
Biomarkers
Biomarkers were determined using the Classical univariate ROC 
curve analyses. Features were ranked based on area under ROC 
curve, T-statistics or Log2 FC. The 95% confidence interval was calcu-
lated using 500 bootstrapping.

Manually Select a Subset of Features/Samples for Receiver 
Operation Characteristic Analysis
Biomarkers with the area under the curve (AUC) more than 0.8 and 
top 5 were manually selected to create biomarker models using 4 
algorithms which were linear support vector machine (SVM), par-
tial least squares discriminant analysis (PLS-DA), random forest, 
and logistic regression. Twenty-five percent of the samples for each 
group were held out as a subset of samples for extra validation pur-
poses. In order to produce a smooth ROC curve, 100 cross-validations 
(CV) were performed and the results were averaged to generate the 
plot. The models were predicted as class probabilities of each sample 
across the 100 cross-validations.

Multivariate Exploratory Receiver Operation Characteristic 
Analysis
The ROC curves were generated by Monte-Carlo cross-validation 
(MCCV) using balanced sub-sampling. In each MCCV, two-thirds of 
the samples were used to evaluate the feature importance. The top 2, 
3, 5, 10 ...100 (max) important features were then used to build clas-
sification models which were validated on one-third of the samples 
that were left out. The procedures were repeated multiple times to 
calculate the performance and confidence interval of each model. 
The algorithms used included linear SVM, PLS-DA algorithm, and 
random forest.

Results

Demographic and Characteristics of Participants
The age ranges for the subjects were from 30 to 68 years old at 
the time of sample collection. There were 33 males (51.6%) and 
31 females (48.4%). The subjects comprised of 55 Malay (85.9%), 2 
Indian (3.2%), and 7 Chinese (10.9%). The demographic data of the 
subjects are presented in Table 1.

Metabolomics Differences Between Studied Groups

Metabolite Profiling: Total ion chromatograms for the analyzed 
serum samples were assessed to ensure the reproducibility of the 
replicates. The metabolites were resolved over 18 minutes of run 
time. A good QC sample was visualized as the QC clustered within 
the patients’ samples with an acceptable RSD of 20% for mass and 2% 
for retention time. This indicates that the analysis was stable and 
reliable (Supplementary Table S1).

https://www.metaboanalyst.ca/)
https://www.metaboanalyst.ca/)
https://www.metaboanalyst.ca/)
https://www.metaboanalyst.ca/)
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Identification of Differentially Expressed Metabolites
The flow of analysis and the numbers of metabolites identified for 
each comparison group are shown in Supplementary Table S2, 
respectively.

Multivariate Analysis
Multivariate exploratory analyses (unsupervised PCA and supervised 
Orthogonal PLS-DA) were performed to demonstrate the separation 
between the normal (non-T2DM) and patient groups. Ortho PLS-DA 
plots show the clusters and separation of metabolites between the 
normal and patients with T2DM only, IHD, and CKD groups (Figure 1).

Pathway Analyses
The differentially expressed metabolites identified were analyzed 
using MetaboAnalyst 5.0 to determine the metabolic pathways 

differentially altered between the normal and T2DM with and with-
out complications and patients with T2DM and those with complica-
tions (Figure 2 and Supplementary Table S3).

Eleven metabolism pathways were identified to be differentially regu-
lated between the 5 groups of subjects compared to the other 2 groups 
do not show any pathways which were differentiated. Four pathways 
(caffeine metabolism, glycerophospholipid metabolism, glyco​sylph​
ospha​tidyl​inosi​tol (GPI)-anchor biosynthesis, and porphyrin and chlo-
rophyll metabolism) were significantly differentiated only between 
patients with T2DM and patients with T2DM and complications.

Drug metabolism—cytochrome P450 was identified in all 5 patients’ 
groups but only reach significant differences between patients with 
T2DM and patients with T2DM and complications.

Table 1.  Demographic Data for the Subjects
Variables Normal, Without T2DM T2DM Patients T2DM Patients with IHD T2DM Patients with CKD
N 16 (25%) 16 (25%) 16 (25%) 16 (25%)
Ethnicity
  Malay 16 (100%) 16 (100%) 10 (62.5%) 14 (87.5%)
  Chinese 0 (0%) 0 (0%) 1 (6.25%) 2 (12.5%)
  Indian 0 (0%) 0 (0%) 5 (31.25%) 0 (0%)
Sex
  Female 13 (81.25%) 6 (37.5%) 4 (25%) 8 (50%)
  Male 3 (18.75%) 10 (62.5%) 12 (75%) 8 (50%)
Age (years) Mean ± SD 34.00 ± 4.00 53.00 ± 10.00 57.00 ± 8.00 62.00 ± 6.00
HbA1C (%) Mean ± SD 5.00 ± 0.30 7.00 ± 1.00 7.00 ± 1.00 7.00 ± 1.00
BMI (kg/m²)
  Mean ± SD 26.00 ± 5.00 31.00 ± 5.00 28.00 ± 6.00 31.00 ± 4.00

BMI, body mass index; CKD, chronic kidney disease; HbA1C, glycated hemoglobin; IHD, ischemic heart disease; T2DM, type 2 diabetes mellitus.

Figure 1.  Orthogonal PLSDA (OPLS-DA) analysis between the normal and patient groups. (A) Normal without risk vs. with risk; (B) 
normal vs. T2DM and T2DM with complications of IHD and CKD; (C) normal vs. T2DM only; (D) normal vs. T2DM with IHD; (E) normal 
vs. T2DM with CKD; (F) patients with T2DM vs. patients with T2DM with IHD; and (G) patients with T2DM vs. patients with T2DM 
with CKD. CKD, chronic kidney disease; IHD, ischemic heart disease; OPLS-DA, orthogonal partial least square discriminant 
analysis; T2DM, type 2 diabetes mellitus.
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Pathways Comparison groups (*significant or # 
insignificant)

Caffeine metabolism *5
Drug metabolism - cytochrome P450 #1, #2, #3, #4, *5
Glycerophospholipid metabolism *5
Glycosylphosphatidylinositol (GPI)-anchor 
biosynthesis 

*5

Porphyrin and chlorophyll metabolism *5
Primary bile acid biosynthesis *1, *2, *3, *4, *5
Selenocompound metabolism *1, *2, #3, *4
Sphingolipid metabolism *1, *2, *3, *4, *5
Steroid hormone biosynthesis #1, *3, #4,
Tryptophan metabolism #1, #2, #3, #4, *5
Tyrosine metabolism  *1, *2, *3, *4, *5

Figure 2.  Pathways differentially expressed in different comparison groups. *Significant; #Not significant. Groups: 1. Normal vs 
T2DM; 2. Normal vs T2DM + IHD; 3. Normal vs T2DM + CKD; 4. Normal vs Patients T2DM + IHD + CKD; 5. Patients T2DM vs Patients 
T2DM +IHD + CKD
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Primary bile acid biosynthesis, sphingolipid metabolism, and tyro-
sine metabolism were significantly differentially regulated between 
all 5 groups of subjects.

Selenocompound metabolism was significantly differentiated 
between 3 groups of subjects which are normal and patients with 
T2DM; normal and patients with T2DM and IHD; and normal and 
patients with T2DM and IHD and CKD. It was detected in a group of 
subjects which were normal and patients with T2DM and CKD but 
did not reach statistical significance.

Steroid hormone biosynthesis was detected in 3 comparison groups 
which are (i) normal and patients with T2DM; (ii) normal and patients 
with T2DM and CKD; and (iii) normal and patients with T2DM and IHD 
and CKD but was significant only in normal and patients with T2DM 
and CKD.

Receiver Operation Characteristic Curve Analysis for Individual 
Biomarkers
Five metabolites with the highest AUC scores were identified, differ-
entiating normal with and without risk of T2DM, patients with T2DM, 
patients with T2DM and IHD, and patients with T2DM and CKD (Table 2).

The metabolites which were higher in the normal subjects with fam-
ily risks are PE (17:1 (9Z)/0:0), LysoPE (0:0/20:0), and 9Z,12​Z,15E​-octa​
decat​rieno​ic acid. Two other metabolites that were higher in the nor-
mal subject without risk for T2DM are (6S)-dehydrovomifoliol and 
5,5-D​imeth​yl-1-​pyrro​line N-oxide (DMPO) (Table 2).

Comparing normal subjects with patients with T2DM and compli-
cations, L-bet​a-asp​artyl​-L-ph​enyla​lanin​e, 6-keto-PGF1, 2-met​hyl-3​
-phen​yl-2-​prope​nal, Bn-NCC-1, and 6,9-heptadecadiynoic acid were 
higher among the normal subjects (Table 2).

All the 5 top listed metabolites which include L-bet​a-asp​artyl​-L-ph​
enyla​lanin​e, Bn-NCC-1, 2-met​hyl-3​-phen​yl-2-​prope​nal, 6-keto-PGF1, 
and 6,9-heptadecadiynoic acid were more abundant among the 
healthy subjects compared to patients with T2DM without complica-
tions (Table 2).

C16 sphinganine, eplerenone, and phytosphingosine were higher 
among the patients with T2DM and IHD compared to the healthy 
normal; while Bn-NCC-1 and 2-met​hyl-3​-phen​yl-2-​prope​nal were 
higher among the healthy subjects (Table 2).

All the 5 metabolites including the l-beta-aspartyl-l-phenylalanine, 
6-keto-PGF1, PI [14:1 (9Z)/18:4 (6Z, 9Z,12Z, 15Z)], 2-met​hyl-3​-phen​
yl-2-​prope​nal, and Gly Val Asn were higher among the normal and 
lower than the patients with T2DM and CKD (Table 2).

The metabolites that differentiated patients with T2DM and patients 
with T2DM and IHD included 5-chola-7,9 (11)-dien-24-oic acid, 
N-acryloylglycine, 4,8 dimethylnonanoyl carnitine, cis-caryophyllene, 
and 9,10-​epoxy​-18-h​ydrox​ystea​rate.​ These metabolites have an AUC 
of more than 0.7 to 0.8. Patients with T2DM were differentiated from 
patients with T2DM and CKD by metabolites which were hydroxy-
prolyl-leucine, 4,4ʹ-​Thiob​is-2-​butan​one, geran​yl-hy​droxy​benzo​ate, 
N-palmitoyl threonine, and Sesamex.

Manually Select a Subset of Features/Samples for Receiver 
Operation Characteristic Analysis
Prediction models were developed for each group using these top 5 
biomarkers listed in Table 2. All 4 algorithms were used to build and 
evaluate the AUC and accuracy of the prediction models.

Area under the curve models developed using different algorithms 
achieved more than 0.8 for all comparison groups. However, the 
differences in AUC were not remarkable when the algorithms used 
were linear SVM, PLS-DA, and random forest. Random Forest pro-
duced the highest values of AUC for all the comparison groups 
with 0.88 as the lowest value achieved in comparing patients with 
T2DM and patients with T2DM and CKD. The AUC values calculated 
by logistic regression saw the most variabilities, especially between 
the patients with T2DM and patients with T2DM and CKD. The coef-
ficient variation calculated for the AUC for each model was less than 
10%; with 0.82% for the model differentiating normal without risk 
from normal with risk; the highest CV was for the model predicting 
patients with T2DM vs. T2DM + IHD (6.87%). The accuracy of the pre-
diction models was high too. The lowest percentage for accuracy 
was the prediction model for patients with T2DM and T2DM and IHD, 
69% using logistic regression and 10.91% of the CV. The AUC and 
accuracy for predicting hold-out data were the lowest at 0.59 and 
0.63%, respectively for the model predicting patients with T2DM and 
patients with T2DM and CKD. The model predicting patients with 
T2DM and patients with T2DM and IHD achieved AUC and accuracy 
of 0.77 and 0.78%, respectively using logistic regression (Table 3).

Multivariate Exploratory Receiver Operation Characteristic 
Analysis
Three different algorithms which are linear SVM, PLS-DA, and ran-
dom forest were used to model the variables to predict different 
groups. The metabolites used by each algorithm were different for 
various groups.

The AUC and accuracies for the 7 groups were compared. The model-
ing for groups comparing the normal without risk and normal with 
risk and group comparing patients with T2DM and patients with 
T2DM and CKD achieved good AUC and accuracies with 2 and 3 
metabolites as variables. While for the other 5 groups, 5 metabolites 
were used to produce a prediction model with good AUC and accu-
racy (Table 4). The metabolites used for the development of each 
model are made available in Appendix A.

Discussion

Globally, DM is on the increasing trend in causing morbidity and 
mortality. About half a million kidney disease deaths and 20% of car-
diovascular deaths were caused by increased blood glucose levels.10 
Besides, DM is associated with macro and microvascular complica-
tions, including nephropathy, retinopathy, IHDs,11,12 and stroke.13

In parallel with one of the aims of precision health, which focuses 
on the rapid and accurate detection of pathologies, efforts to search 
for ideal biomarkers and therapy continue and remain in the main-
stream of medical science. An ideal biomarker helps to predict the 
risk of disease to monitor the progression of the disease and the 
patient’s response to treatment. The biomarker is a useful clinical 
prediction tool which provides insight into the biological processes 
that result in the onset of DM or its complications and might also be 
a surrogate biomarker of the underlying disease process. In addition 
to understanding the disease process, we aimed to identify potential 
biomarkers that can detect subjects at risk of developing DM despite 
the presence or absence of other known conventional risk factors.

We opted for metabolomics to profile and identify various metabo-
lites as potential biomarkers simultaneously using LCMS-QTOF. The 
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use of the metabolomics approach was justified as DM is a systemic 
disorder influenced by lifestyles and diet which affect the metabo-
lism of cells. Metabolites are the end products of cellular activity 
as an interaction between biological and external factors, which 
include diet and the environment.14 As observed in our study, tyro-
sine and tryptophan metabolism were differentially regulated when 
we compared metabolism between (i) normal subjects vs. patients 

with T2DM; (ii) normal subjects vs. patients with T2DM and IHD; (iii) 
normal subjects vs. patients with T2DM and CKD; (iv) normal subjects 
vs. patients with T2DM and IHD and CKD; and (v) patients with T2DM 
vs. patients with T2DM and IHD and CKD. Primary bile acid biosyn-
thesis, sphingolipid metabolism, and tyrosine metabolism were sig-
nificantly differentially regulated between all 5 groups of subjects, 
while glycerophospholipid metabolism and GPI-anchor biosynthesis 

Table 2.  Five Top Biomarkers Differentiated Among Normal Subjects and Patients T2DM With and Without Complications
Metabolite AUC T-Test Log2 FC Levels of Metabolites
Normal without risk vs. normal with risk Normal (−) risk Normal (+) risk
PE (17:1(9Z)/0:0) 0.908 (0.819-0.978) 2.196E-11 −1.4376 Low High
LysoPE (0:0/20:0) 0.823 (0.696-0.922) 1.6404E-4 −0.75239 Low High
(6S)-dehydrovomifoliol 0.813 (0.676-0.911) 6.8818E-7 −0.903 Low High
9Z,12​Z,15E​-octa​decat​rieno​ic acid 0.812 (0.710-0.897) 2.3387E-7 −1.2827 Low High
DMPO 0.800 (0.698-0.888) 1.0411E-6 1.4271 High Low
Normal vs. patients with T2DM and IHD and CKD T2DM + IHD + CKD Normal
l-Beta-aspartyl-l-phenylalanine 0.926 (0.827-0.991) 9.3164E-6 −0.98459 Low High
6-Keto-PGF1 0.924 (0.829-0.980) 2.21E-11 −1.6784 Low High
2-Met​hyl-3​-phen​yl-2-​prope​nal 0.913 (0.832-0.975) 3.3723E-4 −0.64269 Low High
Bn-NCC-1 0.914 (0.809-1.000) 4.2186E-13 −1.9428 Low High
6,9-Heptadecadiynoic acid 0.905 (0.816-0.981) 3.2131E-9 −1.5034 Low High
Normal vs. patients with T2DM only Normal T2DM only
l-Beta-aspartyl-l-phenylalanine 0.961 (0.873-1.000) 2.5874E-7 1.516 High Low
Bn-NCC-1 0.938 (0.839-1.000) 4.8004E-9 2.072 High Low
2-Met​hyl-3​-phen​yl-2-​prope​nal 0.938 (0.822-0.992) 2.4586E-4 0.75583 High Low
6-Keto-PGF1 0.938 (0.832-1.000) 1.1155E-6 1.4391 High Low
6,9-Heptadecadiynoic acid 0.928 (0.815-1.000) 6.8653E-7 1.4782 High Low
Normal vs. patients with T2DM + IHD Normal Patient T2DM + IHD
C16 Sphinganine 0.938 (0.844-1.000) 7.3188E-11 −2.4962 Low High
Eplerenone 0.938 (0.844-1.000) 5.3541E-11 −2.3836 Low High
Bn-NCC-1 0.930 (0.828-1.000) 8.8457E-8 1.9038 High Low
2-Met​hyl-3​-phen​yl-2-​prope​nal 0.914 (0.781-0.984) 0.0079152 0.36111 High Low
Phytosphingosine 0.906 (0.812-1.000) 9.6428E-9 −2.3996 Low High
Normal vs. patients with T2DM + CKD Normal patients with 

T2DM + CKD
l-Beta-aspartyl-l-phenylalanine 0.948 (0.849-1.000) 1.0794E-4 1.0015 High Low
6-Keto-PGF1 0.951 (0.855-1.000) 5.0385E-9 1.8359 High Low
PI [14:1(9Z)/18:4 (6Z, 9Z,12Z,15Z)] 0.906 (0.812-1.000) 7.002E-9 2.2378 High Low
2-Met​hyl-3​-phen​yl-2-​prope​nal 0.914 (0.752-1.000) 1.1724E-4 0.84287 High Low
Gly Val Asn 0.902 (0.780-0.992) 4.17E-6 1.523 High Low
T2DM vs. T2DM + IHD Patients with 

T2DM
Patients with T2DM 
and IHD

5-Cho​la-7,​9(11)​-dien​-24-o​ic Acid 0.798 (0.719-0.866) 1.2596E-9 −0.7803 Low High
N-Acryloylglycine 0.793 (0.711-0.861) 5.061E-6 −0.38269 Low High
4,8 dimethylnonanoyl carnitine 0.779 (0.697-0.851) 1.3863E-4 −0.38768 Low High
cis-Caryophyllene 0.772 (0.691-0.846) 2.4993E-6 −0.68556 Low High
9,10-​Epoxy​-18-h​ydrox​ystea​rate 0.756 (0.688-0.840) 1.8658E-4 −0.40239 Low High
T2DM vs. T2DM+CKD Patients with 

T2DM
Patients with T2DM 
and IHD

Hydroxyprolyl-leucine 0.810 (0.728-0.873) 6.8133E-8 −0.77378 Low High
4,4ʹ-​Thiob​is-2-​butan​one 0.792 (0.707-0.870) 2.3626E-6 −0.61298 Low High
Geran​yl-hy​droxy​benzo​ate 0.771 (0.688-0.846) 1.1051E-8 −1.0001 Low High
N-palmitoyl threonine 0.770 (0.683-0.843) 0.0015492 −0.33026 Low High
Sesamex 0.768 (0.692-0.832) 5.583E-8 −1.0698 Low High

AUC, area under the curve; CKD, chronic kidney disease; FC, fold change; IHD, ischemic heart disease; T2DM, type 2 diabetes mellitus.
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and porphyrin and chlorophyll metabolism were significantly differ-
entiated only between patients with T2DM and patients with T2DM 
and complications. This seemed to be linked to similar findings by 
Lin et al, which showed that GPI-anchor biosynthesis was one of the 

discriminating metabolites between non-alcoholic fatty pancreas 
disease and T2DM.15 Fatty liver is currently gaining much interest as 
both a complication as well as a precursor for T2DM. Nonetheless, the 
differentially expressed metabolism pathway should be studied in 

Table 3.  Efficacy of Prediction Model Based on 5 Top Biomarkers

AUC Accuracy Predictive Model
Groups Linear 

SVM
PLS-DA Random 

forest
Logistic 

regression
CV 

(AUC)
Linear 

SVM
PLS-DA Random 

forest
Logistic 

regression
CV 

(accuracy)
Normal without risk 
vs. with risk

0.98 0.99 0.99 0.97 0.82 0.96 0.95 0.94 0.94 0.78

Normal vs. patients 
with T2DM and 
IHD + CKD

0.94 0.94 0.96 0.88 3.66 0.89 0.89 0.90 0.84 2.97

Normal vs. patients 
with T2DM only

0.97 0.96 0.97 0.92 2.67 0.89 0.91 0.90 0.85 3.21

Normal vs. patients 
with T2DM and IHD

0.99 0.98 1.00 0.90 4.46 0.87 0.88 0.94 0.86 4.14

Normal vs. patients 
with T2DM and CKD

1.00 1.00 1.00 0.97 1.54 0.93 0.95 0.93 0.86 4.15

Patients with T2DM 
vs. T2DM + IHD

0.82 0.82 0.93 0.81 6.87 0.71 0.70 0.86 0.69 10.91

Patients with T2DM 
vs. T2DM + CKD

0.83 0.85 0.88 0.84 2.38 0.77 0.76 0.85 0.75 5.60

Hold-out data
Normal without risk 
vs. with risk - hold out 
data

1.00 1.00 1.00 0.94 3.15 0.94 1.00 0.88 0.88 6.49

Normal vs. patients 
with T2DM + IHD +  
CKD (hold-out data)

0.92 0.92 0.94 0.94 1.31 0.81 0.88 0.88 0.81 4.31

Normal vs. patients 
with T2DM only 
(hold-out data)

1.00 1.00 1.00 0.88 6.45 0.88 1.00 1.00 0.88 7.70

Normal vs. patients 
with T2DM and IHD 
(hold-out data)

1.00 1.00 1.00 0.69 16.92 0.88 0.88 1.00 0.75 11.66

Normal vs. patients 
with T2DM and CKD 
(hold-out data)

1.00 1.00 0.94 1.00 3.15 1.00 1.00 0.88 1.00 6.45

Patients with T2DM 
vs. T2DM + IHD 
(hold-out data)

0.80 0.78 0.79 0.77 1.58 0.78 0.78 0.75 0.78 2.00

Patients with T2DM 
vs. T2DM + CKD  
(hold-out data)

0.59 0.77 0.77 0.79 12.63 0.63 0.63 0.72 0.63 7.25

AUC, area under the curve; CKD, chronic kidney disease; CV, cross-validation; IHD, ischemic heart disease; PLS-DA, partial least square discriminant 
analysis; SVM, support vector machine; T2DM, type 2 diabetes mellitus.
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Table 4.  Comparison of AUC and Accuracies of Models Based on Different Number of Variables
Number of 
Variables SVM

Predictive 
Accuracies (%) PLS-DA

Predictive 
Accuracies (%) Random Forest

Predictive 
Accuracies (%)

Normal without risk vs. normal with risk
2 0.851 (0.604-0.962) 74.2 0.864 (0.656-0.967) 77.5 0.932 (0.836-0.998) 77.5
3 0.901 (0.628-1) 82.8 0.904 (0.714-1) 82.6 0.956 (0.834-1) 82.6
5 0.955 (0.839-1) 86 0.938 (0.86-1) 86.8 0.975 (0.901-1) 86.8
10 0.986 (0.918-1) 93.2 0.965 (0.851-1) 91 0.981 (0.911-1) 91
20 0.996 (0.967-1) 96.9 0.989 (0.929-1) 95.6 0.984 (0.917-1) 95.6
35 0.997 (0.977-1) 96.6 0.998 (0.977-1) 97.8 0.987 (0.927-1) 97.8

Normal vs. T2DM only
5 0.916 (0.8-1) 80.8 0.914 (0.765-1) 84.2 0.939 (0.769-1) 87.2
10 0.946 (0.8-1) 88 0.928 (0.8-1) 85.6 0.962 (0.84-1) 89
15 0.962 (0.84-1) 90.6 0.933 (0.76-1) 86.4 0.961 (0.84-1) 91.2
25 0.981 (0.88-1) 93.2 0.951 (0.769-1) 90 0.964 (0.849-1) 91
50 0.981 (0.88-1) 93.4 0.965 (0.84-1) 92.2 0.965 (0.849-1) 92.2
100 0.99 (0.92-1) 93.8 0.982 (0.889-1) 91.8 0.975 (0.88-1) 92.4

Normal vs. patients with T2DM and IHD
5 0.89 (0.649-1) 81.8 0.924 (0.649-1) 80.6 0.954 (0.825-1) 85.4
10 0.958 (0.8-1) 86.2 0.967 (0.76-1) 89 0.975 (0.84-1) 90.2
15 0.988 (0.889-1) 93.8 0.99 (0.92-1) 93.6 0.982 (0.88-1) 92.8
25 0.995 (0.96-1) 96.4 0.997 (0.96-1) 96.4 0.988 (0.92-1) 95
50 0.999 (1-1) 96.6 0.999 (1-1) 97.8 0.99 (0.92-1) 95.8
100 1 (1-1) 96.2 0.998 (0.969-1) 96.4 0.994 (0.92-1) 96.2

Normal vs. patients with T2DM and CKD
5 0.88 (0.6-1) 80 0.914 (0.685-1) 83.2 0.906 (0.744-1) 85.4
10 0.935 (0.76-1) 87.2 0.938 (0.76-1) 86.4 0.934 (0.738-1) 86.8

(Continued)
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Number of 
Variables SVM

Predictive 
Accuracies (%) PLS-DA

Predictive 
Accuracies (%) Random Forest

Predictive 
Accuracies (%)

15 0.958 (0.84-1) 90.2 0.941 (0.8-1) 88.2 0.949 (0.8-1) 87.4
25 0.979 (0.88-1) 94.6 0.956 (0.809-1) 89.6 0.954 (0.809-1) 89.4
50 0.989 (0.889-1) 95.8 0.968 (0.84-1) 91.6 0.964 (0.84-1) 90.2
100 0.994 (0.96-1) 96.8 0.99 (0.92-1) 92.8 0.965 (0.84-1) 90.8

Normal vs. patients with T2DM and IHD and CKD
5 0.902 (0.711-0.978) 82.8 0.897 (0.752-0.983) 88.7 0.93 (0.785-0.984) 87
10 0.936 (0.824-0.984) 87.2 0.934 (0.823-0.983) 90 0.946 (0.862-0.993) 88.3
15 0.958 (0.903-0.999) 89.4 0.95 (0.873-0.993) 90.1 0.954 (0.88-0.999) 89.1
25 0.977 (0.915-1) 92 0.96 (0.891-0.989) 90.9 0.957 (0.888-0.999) 89.1
50 0.987 (0.953-1) 94.1 0.974 (0.914-1) 92.1 0.965 (0.897-0.999) 90.3
100 0.991 (0.974-1) 94.6 0.986 (0.946-1) 93.8 0.972 (0.92-1) 91.3

Patients T2DM vs. patients with T2DM and IHD
5 0.836 (0.74-0.914) 76.6 0.831 (0.721-0.925) 75.9 0.949 (0.874-1) 89.2
10 0.859 (0.743-0.933) 78.4 0.859 (0.759-0.935) 77.9 0.964 (0.883-1) 92.1
15 0.847 (0.712-0.937) 80.2 0.863 (0.773-0.924) 78.3 0.969 (0.875-1) 92.5
25 0.812 (0.668-0.901) 76.1 0.87 (0.789-0.935) 79.2 0.97 (0.904-1) 93.2
50 0.849 (0.745-0.937) 78.8 0.842 (0.754-0.935) 74.8 0.972 (0.882-1) 93.5
100 0.867 (0.751-0.938) 80.1 0.83 (0.75-0.935) 73.7 0.974 (0.883-1) 94.3

Patients T2DM vs. patients with T2DM and CKD
3 0.7 (0.519-0.828) 63.8 0.757 (0.65-0.866) 69.4 0.835 (0.736-0.96) 78.6
5 0.749 (0.547-0.896) 68.3 0.79 (0.669-0.886) 70.5 0.884 (0.792-0.998) 83.9
10 0.777 (0.635-0.886) 70.9 0.826 (0.724-0.904) 74.7 0.916 (0.815-0.99) 87
20 0.815 (0.732-0.934) 74.4 0.865 (0.769-0.912) 77.8 0.939 (0.849-0.997) 89.8

Table 4.  Comparison of AUC and Accuracies of Models Based on Different Number of Variables (Continued)

(Continued)
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more depth using in vitro or in vivo models to allow us to understand 
how the perturbated metabolism can be modified to help prevent 
getting diabetes and its complications.

Several metabolites were previously reported to be associated 
with the risk of T2DM, including levels of α-hydroxybutyrate16 and 
branched-chain amino acids.17-19 Amino acids such as phenylalanine, 
tryptophan, tyrosine, alanine, glycine, isoleucine, leucine, proline, 
and valine have been associated with insulin secretion and resistance 
leading to increased risk of type 2 diabetes.20 Metabolites, such as 
amino acids, have been used to facilitate understanding, diagnosing, 
and predicting the occurrence of T2D16,17,20 and glucose tolerance in 
pre-diabetes.11,21,22 High leucine levels were found to increase the 
activity of the mTOR pathway which activates S6 kinase and results in 
the inhibition of insulin receptor substrates by serine phosphoryla-
tion. This causes beta-cells not to release insulin due to the inhibitory 
effect on S6 kinase. This eventually causes cellular insulin resistance 
and the development of T2DM. Not only leucine, the concentrations 
of other branched-chain amino acids such as isoleucine and valine 
were also found to be statistically significantly higher by 1.5- to 2-fold 
higher in T2DM patients than those in healthy subjects.23,24 Therefore, 
an increased concentration of branched-chain amino acids is a reli-
able predictor of future insulin resistance among T2DM patients.25,26 
Our study found that hydroxyprolyl-leucine and N-palmitoyl threo-
nine were higher in patients with T2DM complicated with CKD com-
pared to patients without complication. These may be potential 
biomarkers for monitoring T2DM patients in an attempt to delay or 
prevent them from being inflicted with CKD. According to Human 
Metabolome Database (HMDB), hydroxyprolyl-leucine has not yet 
been identified in human tissues or biofluids. It is a dipeptide of 
hydroxyproline and leucine due to an incomplete breakdown prod-
uct of protein digestion or protein catabolism and is likely to be a 
short-lived intermediate. It might have been profiled in our samples 
before they were degraded by proteolysis. However, it may carry 
physiological or cell-signaling effects that require further study 
(accessed on 21 November 2022. Human Metabolome Database: 
showing metabocard for hydroxyprolyl-leucine (HMDB0028867). On 
the other hand, N-palmitoyl threonine is an amino acid conjugate of 
a long-chain N-acylamide. The research on the roles of N-acyl amides 
is ongoing and more potential novel roles of N-acyl amides in health 

and disease will unwind in the future. Thus far, N-acyl amides have 
been reported to play various signaling functions in cardiovascular 
activity, metabolic homeostasis, memory, cognition, pain, and motor 
control.27 In addition, N-acyl amides are implicated in cell migration, 
inflammation, and diseases such as diabetes, cancer, neurodegen-
erative disease, and obesity.28,29 At the same time, we found that 4,4ʹ-​
Thiob​is-2-​butan​one, geran​yl-hy​droxy​benzo​ate, and Sesamex were 
higher in patients with CKD complications.

Besides, Asp Glu Trp, Trp Met Met were higher in patients with 
T2DM and IHD compared to those normal subjects without risk. We 
detected L-bet​a-asp​artyl​-L-ph​enyla​lanin​e and phenyl-2-propenal 
which were higher in the normal subjects (Table 2). These amino 
acids have not been reported to be related to any disease thus far but 
may have roles in cell signaling or other physiological importance.

Changes in the plasma phospholipids, triglycerides, cholesterol 
esters, sphingolipids, glycerophospholipids, sphingomyelins, and 
fatty acids, such as dodecanoic and myristic acids, were reported in 
individuals suffering from T2DM.30-32 Sphingomyelins and glycero-
phospholipids,33 myristic, and stearic acid tend to be higher in individ-
uals with type 1 diabetes mellitus (T1DM) than in individuals without 
diabetes.34,35 Consistently with the earlier findings, C16 sphinganine 
and phytosphingosine were higher in patients with T2DM and IHD 
compared to those normal subjects. Lysophosphatidyl ethanol-
amine and lysophosphatidyl choline were also reported to be higher 
in those with T1DM than those without diabetes.30 We detected PE 
(17:1(9Z)/0:0), LysoPE (0:0/20:0), and (6S)-dehydrovomifoliol and 
9Z,12​Z,15E​-octa​decat​rieno​ic acid were higher in subjects with risk 
of T2DM compared to those without risk. 6,9-Heptadecadiynoic acid 
was profiled to be present at a lower abundance in patients with 
T2DM only and those with complications. The biological roles of PE 
[17:1 (9Z)/0:0), LysoPE (0:0/20:0), and (6S)-​dehyd​rovom​ifoli​ol, 9Z,12​
Z,15E​-octa​decat​rieno​ic acid, 6, 9-heptadecadiynoic acid are not clear 
and will require further exploration.

Other metabolites that had been reported by other studies to be 
higher in T2DM patients are levels of glucose, deoxyhexose, man-
nose, and dihexose.36 Organic acids, such as acetic acid, dimethyl 
ester, and maleic acid, arginine, citrulline, and ornithine have been 
associated with T2DM.25 Suhre et al36 showed that plasma levels of 

Table 4.  Comparison of AUC and Accuracies of Models Based on Different Number of Variables (Continued)
Number of 
Variables SVM

Predictive 
Accuracies (%) PLS-DA

Predictive 
Accuracies (%) Random Forest

Predictive 
Accuracies (%)

38 0.83 (0.705-0.917) 75.6 0.881 (0.784-0.945) 80 0.943 (0.84-1) 91.3
77 0.831 (0.712-0.939) 76.1 0.901 (0.801-0.961) 82.4 0.939 (0.832-1) 92.4

AUC, area under the curve; CKD, chronic kidney disease; IHD, ischemic heart disease; PLS-DA, partial least square discriminant analysis; SVM, support 
vector machine; T2DM, type 2 diabetes mellitus.
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1,5-anhydroglucitol were approximately 40% lower in people with 
T2DM than in healthy individuals.36 In our study, (S)-alpha-terpinyl 
glucoside was identified as a marker differentially expressed 
between normal and patients with T2DM and CKD. We also 
detected that 5-chola-7, 9 (11)-dien-24-oic acid, N-acryloylglycine, 
4,8 dimethylnonanoyl carnitine, cis-caryophyllene, and 9,10-​
epoxy​-18-h​ydrox​ystea​rate to be higher in patients with T2DM 
and complicated with IHD compared to T2DM patients without 
complications.

We developed the predictive models using the 4 algorithms pro-
vided by Metaboanalyst 5.0. It was interesting to note that random 
forest provided a better predictive accuracy for all the comparison 
groups we studied here compared to linear SVM, PLS-DA, or logis-
tic regression. This could be due to the advantage of Random Forest 
being able to handle large data sets and its capability to work with 
thousands of variables. There have been many studies completed 
which compared the efficiency of random forest and logistic regres-
sion. Random forest was found to perform better in the model for 
clinical risk scores for predicting clinical outcomes of atrial fibril-
lation37, but the outcomes were similar to other machine learning 
approaches for reports.38,39 Therefore, we would suggest that differ-
ent algorithms should be evaluated to identify model with good pre-
dictive accuracies.

Conclusion

The LCMS-QTOF was used to profile the differentially expressed 
metabolites in the normal subjects and T2DM patients with and 
without complications of IHD or CKD. We report here amino acids 
as well as lipids which are potential biomarkers differentiating the 
different subjects and complications. The metabolism pathways that 
were dysregulated among the patients are the tyrosine, tryptophan, 
and glycerol metabolism pathways which are consistent with many 
reports. The top 5 biomarkers approach showed that random for-
est algorithm produced the prediction with the highest accuracies. 
However, these models will require further validation before they can 
be translated into clinical use. Metabolomics is a new emerging field 
that provides comprehensive phenotypic information on the disease 
and drug response of a patient. It serves as a potential comprehen-
sive therapeutic drug monitoring approach to be adopted in the 
near future for pharmaceutical care.
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Supplementary Table S1.  The distribution and analyses for quality controls data points

Metabolites
m/z Retention time

Mean SD RSD 
(%) Mean SD RSD 

(%)
D-Proline 116.0706 0.0008 0.0007 0.7815 0.0022 0.2777
2-Amino-3-
methyl-1-butanol 104.4903 0.2422 0.2318 0.8599 0.0018 0.2038

3beta-Hydroxy-
16-
phosphonopregn-
5-en-20-one 
monoethyl ester

447.2227 0.0188 0.0042 5.8948 0.0682 1.1563

Octylamine 130.1572 0.0014 0.0011 6.2328 0.0283 0.4540
Isodiospyrin 413.042 0.0021 0.0005 6.7254 0.0128 0.1901
Fumaricine 408.1231 0.0022 0.0005 8.8150 0.0091 0.1035
Casimiroedine 435.2517 0.0106 0.0024 9.0615 0.0591 0.6518
9-oxo-2E-
decenoic acid 185.1164 0.0034 0.0018 10.4688 0.0239 0.2285

Met His Lys 437.2120 0.1414 0.0323 15.4281 0.0301 0.1949
3α,9α,11β-
Trihydroxy-5β-
cholan-24-oic 
Acid

426.3637 0.0378 0.0089 16.7094 0.0136 0.0814

Supplementary Table S2.  The flow of analysis and the number of metabolites identified through statistical analysis for each 
comparison groups

Groups Raw data
(Aligned 
features)

Filter Flags 
(50%)

Matched 
metabolites 
from Metlin 

database

1. Normal no risk vs Normal 
with risk)

72960 1586 60 35

2. Normal versus T2DM with 
and without complica�on

94256 1667 335 137

3. Normal versus T2DM only 56819 1666 339 144

4. Normal versus T2DM with 
IHD 

55454 1935 363 151

5. Normal versus T2DM with 
CKD

59349 1736 186 71

Raw data
(Aligned features = 

94256)

Matched 335 
metabolites from 
Metlin database

Filter Flags (50%) = 
1667 metabolites 
detected

Normal versus 
T2DM with and 
without complica�on

Recursion analysis, 
P-value ≤ 0.05,
FC ≥ 2.0 = 137 
metabolites 

Recursion
analysis,

P-value ≤ 0.05,
FC ≥ 2.0



Supplementary Table S3.  The top 5 metabolites and the AUC and levels in different groups of subjects
Metabolite AUC T-test Log2 FC AUC graphs Levels of metabolites

Normal without risk vs Normal with risk

PE(17:1(9Z)/0:0) 0.90771 2.196E-11 -1.4376

LysoPE(0:0/20:0) 0.81396 1.6404E-4 -0.75239

(6S)-dehydrovomifoliol 0.80859 6.8818E-7 -0.903

9Z,12​Z,15E​-octa​
decat​rieno​ic acid

0.80664 2.3387E-7 -1.2827

(Continued )



Metabolite AUC T-test Log2 FC AUC graphs Levels of metabolites

DMPO 0.79395 1.0411E-6 1.4271

Normal vs patients with T2DM + complication

L-bet​a-asp​artyl​
-L-ph​enyla​lanin​e

0.92383 9.3164E-6 -0.98459

6-Keto-PGF1 0.92057 2.21E-11 -1.6784

2-Met​hyl-3​-phen​
yl-2-​prope​nal

0.91406 3.3723E-4 -0.64269

Supplementary Table S3.  The top 5 metabolites and the AUC and levels in different groups of subjects (Continued )

(Continued )



Metabolite AUC T-test Log2 FC AUC graphs Levels of metabolites

Bn-NCC-1 0.91146 4.2186E-13 -1.9428

6,9-Heptadecadiynoic 
acid

0.89909 3.2131E-9 -1.5034

Normal vs patients with T2DM only

L-bet​a-asp​artyl​
-L-ph​enyla​lanin​e

0.96094 2.5874E-7 1.516

Bn-NCC-1 0.93359 4.8004E-9 2.072

Supplementary Table S3.  The top 5 metabolites and the AUC and levels in different groups of subjects (Continued )

(Continued )



Metabolite AUC T-test Log2 FC AUC graphs Levels of metabolites

2-Met​hyl-3​-phen​
yl-2-​prope​nal

0.93359 2.4586E-4 0.75583

6-Keto-PGF1 0.92969 1.1155E-6 1.4391

6,9-Heptadecadiynoic 
acid

0.92578 6.8653E-7 1.4782

Normal vs patients with T2DM + IHD

C16 Sphinganine 0.9375 7.3188E-11 -2.4962

Supplementary Table S3.  The top 5 metabolites and the AUC and levels in different groups of subjects (Continued )
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Metabolite AUC T-test Log2 FC AUC graphs Levels of metabolites

Eplerenone 0.9375 5.3541E-11 -2.3836

Bn-NCC-1 0.92578 8.8457E-8 1.9038

2-Met​hyl-3​-phen​
yl-2-​prope​nal

0.90625 0.0079152 0.36111

Phytosphingosine 0.90625 9.6428E-9 -2.3996

Supplementary Table S3.  The top 5 metabolites and the AUC and levels in different groups of subjects (Continued )

(Continued )



Metabolite AUC T-test Log2 FC AUC graphs Levels of metabolites

Normal vs patients with T2DM + CKD

L-bet​a-asp​artyl​
-L-ph​enyla​lanin​e

0.94336 1.0794E-4 1.0015

6-Keto-PGF1 0.94141 5.0385E-9 1.8359

PI(14​:1(9Z​)/18:​
4(6Z,​9Z,12​Z,15Z​))

0.90625 7.002E-9 2.2378

2-Met​hyl-3​-phen​
yl-2-​prope​nal

0.90234 1.1724E-4 0.84287

Supplementary Table S3.  The top 5 metabolites and the AUC and levels in different groups of subjects (Continued )

(Continued )



Metabolite AUC T-test Log2 FC AUC graphs Levels of metabolites

Gly Val Asn 0.89844 4.17E-6 1.523

T2DM vs T2DM + IHD

5?-Ch​ola-7​,9(11​
)-die​n-24-​oic Acid

0.79602 1.2596E-9 -0.7803

N-Acryloylglycine 0.79297 5.061E-6 -0.38269

4,8 
dimethylnonanoyl 
carnitine

0.7793 1.3863E-4 -0.38768

Supplementary Table S3.  The top 5 metabolites and the AUC and levels in different groups of subjects (Continued )
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Metabolite AUC T-test Log2 FC AUC graphs Levels of metabolites

cis-Caryophyllene 0.77051 2.4993E-6 -0.68556

9,10-​Epoxy​-18-h​
ydrox​ystea​rate

0.75598 1.8658E-4 -0.40239

T2DM Vs T2DM+CKD

Hydroxyprolyl-
Leucine

0.80872 6.8133E-8 -0.77378

4,4'-​Thiob​is-2-​
butan​one

0.79065 2.3626E-6 -0.61298

Supplementary Table S3.  The top 5 metabolites and the AUC and levels in different groups of subjects (Continued )
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Metabolite AUC T-test Log2 FC AUC graphs Levels of metabolites

Geran​yl-hy​droxy​
benzo​ate

0.77026 1.1051E-8 -1.0001

N-palmitoyl 
threonine

0.77026 0.0015492 -0.33026

Sesamex 0.76636 5.583E-8 -1.0698

Supplementary Table S3.  The top 5 metabolites and the AUC and levels in different groups of subjects (Continued )



Appendix A.  Important features for prediction model
Rank Freq. Importance T2DM T2DM +CKD

4,4'-​Thiob​is-2-​butan​one 1 7.894735 Low High
Hydroxyprolyl-Leucine 1 6.932916 Low High
Sesamex 1 6.427967 Low High
Trp Thr Tyr 1 6.357728 Low High
2-([4​-(2-C​hloro​pheny​l)-5-​metho​xycar​bonyl​-3-et​hoxyc​arbon​yl-6-​
methy​l-2-p​yridy​l]met​hoxya​cetic​ acid

1 6.210388 Low High

Apigenin 7-glu​curon​osyl-​(1->2​)-glu​curon​ide 1 6.088583 Low High
N-palmitoyl threonine 1 5.84147 Low High
methyl 4-[2-​(2-fo​rmyl-​vinyl​)-3-h​ydrox​y-5-o​xo-cy​clope​ntyl]​-buta​
noate​

1 5.601029 Low High

3E,4Z​,7,11​-Tetr​ameth​yl-6,​10-tr​ideca​diena​l 1 5.239326 Low High
Fusicoccin H 0.966667 7.223361 Low High
Geran​yl-hy​droxy​benzo​ate 0.966667 6.373256 Low High
2,5-Dimethoxycinnamic acid 0.966667 5.47431 Low High
methyl 15,16​-epox​y-9,1​2-oct​adeca​dieno​ate 0.966667 5.08058 Low High
alpha​-Carb​oxy-d​elta-​decal​acton​e 0.933333 5.845996 Low High
Selagine 0.933333 5.480653 Low High
Phenacylamine 0.933333 5.08747 Low High
14-Fl​uoro-​11Z-t​etrad​eceny​l acetate 0.933333 4.732145 Low High
Prosafrinine 0.9 5.792177 Low High
N-Acryloylglycine 0.9 4.920724 Low High
Ritodrine glucuronide 0.866667 6.388905 Low High
Mupirocin 0.866667 5.199133 Low High
3-(4-​Hydro​xyphe​nyl)p​ropio​nic acid 0.833333 4.347908 Low High
Tetrahydropentoxyline 0.8 4.630027 Low High
Guaifenesin 0.8 4.318781 Low High
Dihydropicromycin 0.8 4.257284 Low High
Pentadecanoyl-EA 0.766667 5.39465 Low High
Zedoarol 0.766667 4.043434 Low High
Isoxeniaphyllenol 0.733333 4.207294 Low High
Ethyl Oxalacetate 0.733333 3.970136 Low High
cis-Caryophyllene 0.733333 3.848878 Low High
N-palmitoyl glutamic acid 0.7 3.894902 Low High
Xestoaminol C 0.666667 3.957251 Low High
10-hy​droxy​-2E,8​Z-Dec​adien​e-4,6​-diyn​oic acid 0.666667 3.926729 Low High
Kamahine C 0.633333 5.066685 Low High
Tracheloside 0.6 3.727567 Low High
N,N-D​idesm​ethyl​tamox​ifen 0.566667 3.568566 Low High
3-Hydroxybenzaldehyde 0.566667 3.557737 Low High
Fludiazepam 0.5 3.346745 Low High
7Z,11​Z,14E​-eico​satri​enoic​ acid 0.433333 3.475684 Low High
UDP-L-Ara4O 0.4 3.609028 Low High
Urdamycin G 0.333333 3.195331 Low High
10-Nitrooleate 0.333333 2.935037 Low High
Pentagastrin 0.3 3.056213 Low High
17bet​a-Met​hyles​tra-1​,3,5(​10)-t​rien-​3-ol 0.3 3.025458 Low High
11-me​thoxy​-12,1​3-epo​xy-9-​octad​eceno​ic acid 0.3 2.969978 Low High
AX 048 0.266667 3.057409 Low High
1?,25​-dihy​droxy​-24-n​orvit​amin D3 / 1?,25​-dihy​droxy​-24-n​orcho​lecal​
cifer​ol

0.266667 2.892184 Low High

PI(22​:6(4Z​,7Z,1​0Z,13​Z,16Z​,19Z)​/21:0​) 0.266667 2.679541 Low High
Medroxyprogesterone glucuronide 0.233333 2.894509 Low High
Fasoracetam 0.233333 2.754144 Low High

(Continued )



Rank Freq. Importance T2DM T2DM +CKD
Caffeine 0.2 2.86665 Low High
Linoleamide 0.2 2.700457 Low High
Nocardicin C 0.2 2.661127 Low High
N-docosahexaenoyl GABA 0.2 2.554849 Low High
hexadecanedioic acid mono-L-carnitine ester 0.166667 2.746778 Low High
5?-Ch​ola-7​,9(11​)-die​n-24-​oic Acid + 12.08878 0.166667 2.408471 Low High
Laserpitin 0.166667 2.400423 Low High
L,L-C​yclo(​leucy​lprol​yl) 0.133333 2.607865 Low High
2-Hyd​roxyd​esmet​hylim​ipram​ine glucuronide 0.133333 2.422086 Low High
Tyr Ala Phe 0.133333 2.376717 Low High
2(?-D​-Mann​osyl)​-D-gl​ycera​te 0.133333 2.146971 Low High
5?-Ch​ola-7​,9(11​)-die​n-24-​oic Acid 0.1 2.622958 Low High
(3a,5​b,7b)​-24-[​(carb​oxyme​thyl)​amino​]-7-h​ydrox​y-24-​oxoch​olan-​
3-yl-​b-D-g​lucop​yrano​sidur​onic acid,

0.1 2.448864 Low High

3-Met​hylgl​utary​lcarn​itine​ 0.1 2.211743 Low High
Cyclopassifloic acid E 0.066667 1.73861 Low High
Isocarbostyril 0.033333 2.025416 Low High
15-me​thyl-​1,2-h​eneic​osane​diol 0.033333 1.88634 Low High
Gln Tyr Lys 0.033333 1.861729 Low High
Nitrendipine 0.033333 1.667372 Low High

Appendix A.  Important features for prediction model (Continued )


