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With obesity reaching epidemic dimensions, its

association with degenerative metabolic diseases,
especially diabetes mellitus and atherosclerosis,

has been clearly established (1). Research shows

that approximately 20% of the population in

United States are obese (2) and obesity has become

an alarming factor in the adolescent age group (3).

Because fatty foods are rich in calories and the role

of cholesterol in the pathogenesis of atherosclerosis

has become evident, diets having carbohydrates as

the main component and having low cholesterol and

fat remain as a major approach for the treatment of
atherosclerotic disease (4, 5). In the last two decades

when this type of diet has been strictly used, the

prevalence of obesity and type 2 diabetes has

increased whereas no decrease in atherosclerotic

disorders has been detected (6).

Competition of glucose and fatty acids as
fuel and the Randle Hypothesis

According to Randle who performed his investi-
gations on heart muscle (7), the fatty acid present

in the medium is the determinant of fuel use in the
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cell (8, 9). In other words, while the fatty acid

present is oxidized, it hinders oxidation of glucose

(10). In this hypothesis summarized in Figure 1, an

increase in fatty acids or ketone bodies leads to

accumulation of acetyl-CoA and NADH which

results in inhibition of glucose metabolism at the

pyruvate dehydrogenase (PDH) level (11).     

Thus, glucose metabolism is inhibited at two

important steps (12). At the first step, the increased

cytoplasmic citrate concentration inhibits phospho-

fructokinase. This leads to accumulation of glucose-

6-phosphate because it is not used and this results

in inhibition of hexokinase. Thus, the access of

glucose into the cell (uptake) is hindered (13)

(Figure 1). At the second step, pyruvate dehydrogenase

enzyme is inhibited as a result of activation of

pyruvate dehydrogenase kinase and this prevents

the entry of pyruvate into the oxidative metabolism

leading to impairment of the oxidation of glucose

(12, 13) (Figure 1). This hypothesis advocated by

many authors forms the basis of the mechanism

that lies beneath the argument which is still valid

at the present time that excessive fatty acids and

nutrition rich in fat lead to insulin resistance.

However, in keeping with the principles stated below,

currently it is accepted more widely that glucose is

the molecule responsible for the partitioning of

fuel in the cell (14, 15).    
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very important and the ACC enzyme has a rate

determining feature (24, 25) (Figure 3). Thus,
glucose in excess of the energy need of the cell

leaves the mitochondria as citrate and enters the cell

cytoplasm where it is used in fatty acid synthesis
as substitute fuel by means of malonyl-CoA (26).

It also prevents the entry of fatty acids (fats mostly
ingested with food) into the mitochondria to be

oxidized by means of the same metabolite (malonyl-

CoA) (27, 28) (Figure 4).

To summarize the explanations given above in one

sentence, it can be stated that malonyl-CoA is a
versatile intracellular signal molecule (=intracellular

signal of plenty) (29).

Glucose, fatty acid and malonyl-CoA

In order for long chain fatty acid-CoA (LCFA-CoA)

in the cell cytosol to be β-oxidized in the mito-

chondria (16), carnitin palmitoyltransferase 1 (CPT1)

enzyme located in the outer membrane of the

mitochondria is needed (17). LCFAs carried to the

cell mitochondria after joining with carnitin are

separated from the carnitin by means of the CPT2

enzyme located in the inner membrane of the

mitochondria. Then, they go through β-oxidation

via esterification with CoA (25). The freed carnitin

joins the "carnitin shuttle" to be used again (18)

(Figure 2).

Malonyl-CoA, an intermediary product in de novo

lipogenesis of carbohydrates, is yielded from acetyl-

CoA by means of the acetyl-CoA carboxylase (ACC)

enzyme (18-20) (Figure 3). The yielded malonyl-

CoA constitutes an important stage in de novo

lipid synthesis from carbohydrates (21). By means

of the fatty acid synthase (FAS) enzyme, 7 malonyl-

CoA is joined with an acetyl-CoA to form palmitic

acid (22). Palmitic acid goes through esterification

with glycerol in the endoplasmic reticulum of the

the cell and is stored after being converted to

triacylglycerole (=triglycerid) (23). The inhibitory

effects of malonyl-CoA over CPT1 were established

in the studies done by DJ McGarry. The metabolic

intermediary step for malonyl-CoA synthesis is

Figure 1. Randle hypothesis: according to Randle, potential sites

(indicated with the symbol *) of free fatty acids (FFA)

action on insulin mediated metabolism. PDHK: pyruvate

dehydrogenase kinase, G-6-P: glucose-6-phosphate, F-6-P:

fructose-6-phosphate, F-1,6-P: fructose 1,6 diphosphate.

Dotted arrows denote inhibition (See reference 11 for

further details).

Figure 2. Scheme of long chain fatty acid transportation to mitochondria

and carnitine shuttle, CPT: carnitine palmitoyltransferase,

CAT: carnitine acylcarnitine transporter.

Figure 3. Coordinated utilization of glucose and fatty acids and

importance of malonyl-CoA. ACC: acetyl-CoA carboxylase,

CPT: carnitine palmitoyltransferase, DAG: diacylglycerol,

PA: phosphatidic acid. Dotted arrows denote inhibition

(Adapted from reference 16).



ORIGINAL ARTICLE

3

as a result of a chronic diet rich in carbohydrates.

Now we are going to apply this to various organs

and try to understand how small biochemical

functioning differences cause important alterations

leading to the physiopathologic features of obesity

and metabolic syndrome.

The fat organ and the adipocyter system

The fat organ (39) is of pivotal importance in the

formation of metabolic syndrome. In the course of

the evolutionary process, fat cells have acquired

the ability to store excess energy as triglyceride in

a virtually unlimited manner (40). Two basic benefits

are obtained this way. First of all, the organism has

gained a great deal of flexibility and freedom as a

result of being relieved from the limitations of

continuous fuel replacement. Secondly, very limited

amounts of fat are found in the nonadipocyter

system cells to meet urgent needs (41). Amounts of

fat exceeding this can cause toxication by mechanisms 

The fate of fats not oxidized in the cell

Following a mixed diet predominantly comprising

carbohydrates, the glucose in excess of the need is

stored as reserve cell fuel in the form of triglyce-
rides by means of de novo lipogenesis (DNL) (30,

31). Fats not entering the mitochondria to generate

energy through oxidation are accumulated in the

cell in the form of LCFA-CoA and its further

metabolic products such as phosphatidic acid (PA)

and diacylglycerol (DAG) (32, 33). These three

molecules of fat metabolites keep the cell
stimulated for an unusually prolonged time via

causing alterations in the membrane and ions

responsible for maintaining cell integrity and by

commencing enzyme activations (phosphorylation/

dephosphoryation) (34) (Figure 4).

If the fat mass accumulated in the cell as a result of

chronic carbohydrate excess can not be controlled
through an increase in the compensatory function

of the mechanisms protecting the homeostasis of

the organism, cell death ensues as a result of lipo-

apoptosis (35, 36). The functioning of the mecha-

nisms outlined in Figure 5, for the details of which

the mentioned references will be consulted, and
the loss of the cell occurring through apoptosis

mediated by ceramide (37), a fatty acid metabolite,

cause function failures in organs with time (lipo-

toxicity hypothesis) (38).

This is the most tangible picture of the basic

functioning of the nonadipocyter cell type generated

Figure 4. Interrelation between glucose & insulin and long chain

fatty acid (LCFA) disposition. DAG: diacylglycerol, CPT:

carnitin palmitoyltransferase. Dotted arrows denote

inhibition  (See references 16 and 105).

Figure 5. Proposed scheme for regulation of apoptosis by long chain

fatty acids. NO: nitric oxide (See references 37and 73 for

further details).
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in the muscle in particular prepares the setting for

obesity and the other metabolic syndrome parameters

through increasing glucose flow into the fat tissue
as a result of performing novel arrangements in the

distribution of substrates (50). 

Fat cells, which start storing lipid, also start the
synthesis and secretion of leptin as a protective

first aid signal! for the nonadipocyter cells that

encounter this situation unprepared (51). Leptin
tries to prevent the accumulation of lipid in the cell

by activating enzyme expressions (52) that increase

fatty acid oxidation, which leads to rectification of
the malonyl-CoA mediated pathologic mechanisms

(53). Namely, fatty acids while storing the energy

excess originating from a mixed diet rich in carbo-

hydrates,  to use when there is a need produce
protective control mechanisms to prevent accumu-

lation of fat that could cause the impairment of

physiologic functions of other system cells (54). 

Malonyl-CoA, pancreatic -cells, and
hyperinsulinemia

In normal pancreatic β-cells the FAS system is
weak with respect to the well-developed ACC

enzyme genetic structure (29, 55). Hence, in the

case of glucose excess malonyl-CoA synthesis will
increase with the hyperactivation of ACC enzyme

(56, 57) whereas FAS mediated fatty acid production,

which is the main pathway for the elimination of
malonyl- CoA will be inadequate (58). The result

is a marked increase in the cytosolic malonyl- CoA

concentration (59).  If we apply figure 4 to b-cell, the

increase in malonyl- CoA will cause the accumulation
of non-oxidized fatty acid metabolites (LCFA-CoA,

PA and DAG) as a result of the inhibition of the

CPT1 enzyme (29, 34). Thus, membrane K+
ATP

channels close (60, 61), the amount of cytosolic

Ca+2 increases and the hyper-polarized cell secretes
insulin (29, 62) (Figure 7). Chronic and misusing
of this mechanism causes to increased insulin

secretion that best explains the hyperinsulinemia

of metabolic syndrome (63). In fact, β-cell
functions as a sensor in the case of glucose excess,

and increases glucose entry into the fat and muscle

tissues susceptible to insulin via hyperinsulinemia,

providing a compensatory elimination (64). 

The well-known anabolic effects of insulin (65)

increase fat storage by means of promoting lipo-

which were explained briefly above. Thus, fat tissue

prevents the accumulation of fat in the nonadipocyter

system by gathering the excess fat in its own body

(41).

The fat tissue has special equipment for DNL (42)

(Figure 6). The genetic system coding the glycolytic

and lipogenic enzymes, especially pyruvate kinase

(PK), ACC, malic enzyme (ME), FAS, and glyceral-

dehyde phosphate dehydrogenase (GAPD), is quite

well developed (23). Glucose alone or fortified

with insulin stimulates the expression of these

genes and the synthesis of enzyme proteins (43,

44). DNL has such a strict controlling system that

glucose and/or insulin also activates transcription

factors such as Peroxisome Proliferator Activated

Receptor γ (PPAR γ) (45) and Sterol Regulatory

Element Binding Protein 1a (SREBP1a) (46, 47).

Thus, the lipogenetic and storing functions of fat

tissue can operate extremely well against all kinds

of difficulties. In the mentioned references, the

very clear molecular mechanisms of these glucose

and insulin mediated arrangements are elucidated

comprehensively (21-23, 25, 40). Insulin also stimu-

lates the transition of glucose carriers (GLUT4)

from the cytosol to the membrane of fat cells (48).

At the end of these procedures  carbohydrate excess

resulting from diet, glucose that could be harmful

for the nonadipocyter system is transported to fat

cells (49). The selective insulin resistance generated

Figure 6. Scheme of the biochemical pathways of lipogenesis from

glucose in the liver and adipose tissue. G6P: glucose-6-

phosphate, PEP: phospho enol pyruvate, 6-P-G: 6 phospho

gluconate, R5P: ribosyl-5-phosphate (See references 22

and 38 for further details).
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physiologic temporary glucose loading is reorganized

(70). However, in chronic glucose loading the

malonyl-CoA increase in the cell is prolonged.

This situation prevents fatty acid oxidation and

causes the accumulation of fatty acid metabolites

mentioned above and this can lead to leptin

resistance by means of possible membrane and

leptin receptor alterations (71, 72). As a result of

these reactions shown in Figure 8, fatty acid

metabolites inside the cell form endogenous ligands

for PPARγ (73) and enhance the transcription of

the genes controlling ACC and the FAS enzyme

which is expressed weakly in β-cell (86). The net

result is triglyceride storage in β-cell (74). After a

threshold value in the accumulation of triglyceride

in β-cell, lipoapoptosis as explained in the intro-

duction ensues (35, 36) (Figure 5). Apoptotic

pancreatic β-cell loss can lead to type 2 diabetes

mellitus in the course of time (75, 76).

Glucose excess and the liver

In the liver, which is a lipogenic organ, glucose can

readily enter the cell with the glucose transporters

(GLUT2) (21, 77) located in the membrane. Insulin

accelerates the phosphorylation of glucose as glucose-

6-phosphate (G6P) (78, 79) through enhancing the

glycokinase gene expression (80). Successively, G6P

enhances the expression of the genes controlling

lipogenic enzymes and their protein synthesis (21).

Moreover, with the activation of glucose and insulin

mediated PPARγ and SREBP1 transcription factors

fatty acid and triglyceride synthesis increases via

DNL, (45, 81) and fatty acid oxidation decreases

with diminished PPARα (82). The predominant fat

following endogenous DNL is palmitic acid which

is a saturated fatty acid (83). The generated fat is

again converted to VLDL by means of insulin (84)

and is transported to be stored in the adipose tissue

(85). This causes an increase in triglyceride secretion

and an elevated blood triglyceride level (86). In the

case of persistence of energy excess, the clinical

presentation of hepatic steatosis ensues and this

phenomenon is usually encountered in obesity and

metabolic syndrome and is often mistaken as being

benign (87, 88). This increase in fat in hepatocytes

causes lipoapoptosis with mechanisms similar to

those seen in pancreatic β-cells (Figure 5), and can

lead to hepatic failure in the long term (89, 90). 

genesis in fat cells (66). Leptin secreted as a response

to fat storage in the adipocyte (41, 67) induces the

PPARα transcription factor in pancreatic β-cells

leading to the increase in genetic expressions of fatty

acid oxidation enzymes, especially CPT1 (68, 69)

(Figure 8). Thus, the impaired fatty acid oxidation

as a result of the increase in malonyl-CoA in

Figure 7. Proposed scheme of the biochemical reactions necessary

for insulin secretion in pancreatic β-cells. CPT: canitine

palmitoyltransferase, DAG: diacylglycerol, DHAP: dihydroxy

acetone phopsphate, α-GP: α glycerol-3-phosphate, GAP:

glyceraldehyte-3-phosphate, OAA: oxalo acetic acid. Dotted

arrows denote inhibition (Adapted from reference 66).

Figure 8. Influence of leptin in nonadipocyter system in normal and

leptin resistant state. PPARα: peroxisome proliferator acti-

vated  receptor α, ACO: acyl-CoA oxidase, CPT-1: carnitine

palmitoyltransferase-1, PPARγ: peroxisome proliferator

activated receptor γ, ACC: acetyl-CoA carboxylase, FAS:

fatty acid synthase, PPRE: PPAR response element,

OB-RL: long form of leptin receptor (Adapted from and

see reference 37 for further details).
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value (100, 101). An interesting point here is that

the low cholesterol level inside the cell that triggers

the increase in cholesterol synthesis also upregulates
ACC mRNA (102). Namely, diminishing the choles-

terol in the diet causes the increase of endogenous

cholesterol synthesis and ACC, the rate determining
enzyme for fatty acid synthesis, leading to an

increase in malonyl-CoA (102).

SREBP1 causes an increase in LDL receptors at
the hepatocyte surface by means of stimulating the

transcription of LDL receptor genes together with

genes functioning in fatty acid synthesis (103).
Cholesterol that increases as a result of the mechanisms

described above is secreted outside hepatocyte in

the form of LDL and is transported back into

hepatocyte by LDL receptors increased in number
(104, 105). Hence, blood cholesterol and LDL levels

do not elevate very much for such a dislipidemic

situation (106). However, in metabolic syndrome,
LDL particles are small, dense, and more sensitive

to oxidation and therefore, have a more atherogenic

character (107).

Carbohydrate excess, skeletal muscle and
insulin resistance

Important alterations take place also in skeletal
muscle tissue where fuel use is the most important

in the case of diets chronically rich in carbohydrates

(108). Acetyl-CoA accumulates in the cytoplasm
as citrate following the generation of ATP exceeding

the cell need as a result of glucose excess taking

the glycolytic pathway in the tricarboxylic acid

cycle (109). Phosphofructokinase (PFK), the rate
determining enzyme in the glycolytic pathway, is

inhibited in the case of citrate excess as demonstrated

by the refined studies of Ruderman and co-workers
(110). With the inhibition of PFK catalyzing the

conversion of fructose 6 phosphate to fructose 1,6

diphosphate an accumulation of substrates prior to
this step ensues and with the increase of G6P part

of the glucose shifts to the glycogen synthesis (111)

(Figure 1). With the filling of the limited glycogen
stores, G6P that cannot feed the glycolytic pathway

accumulates and inhibits the hexokinase (112).

This means failure of insulin to insert glucose into

the muscle cell; briefly, insulin resistance.

CPT1 protein in the skeletal muscle and the liver

are different. The isoform in the muscle is more 

The liver is the place where cholesterol synthesis

occurs which is another important atherogenic lipid

(91). As a result of diets rich in carbohydrates, the

acetyl-CoA exceeding the need accumulates in the

hepatocyte cytoplasm as cytosolic citrate. Citrate is

first converted into acetyl-CoA and then forms

triglycerides by entering the lipogenic pathway

over malonyl-CoA (26). Acetyl-CoA and especially

malonyl-CoA (92, 93) are also substrates necessary

for cholesterol synthesis (Figure 9). This flow

from citrate towards cholesterol is associated with

the feeding status of the subject (94).

With today’s favorable diets containing very low

cholesterol, little fat, and plenty of carbohydrates,

(95) the immature SREBP2 embedded in the endo-

plasmic reticulum, which provides transcriptive

control of the genes coding enzymes responsible

for cholesterol synthesis, is activated (96, 97) and

converted to the mature or nuclear form named

nSREBP2 (98). SREBP2 and SREBP1 are members

of the same family that are subject to different

genetic control and responsible for different metabolic

pathways by means of different protein synthesis

(96, 97). It is now clear that the enzymes SREBP2

controls are 3-hydroxy-3-metylglutaryl CoA (HMG

CoA) reductase, HMG CoA synthase, farnesyl

diphosphate synthase, and squalene synthase (99).

This system is subject to feedback control and the

endogenous cholesterol synthesis continues until the

cholesterol level inside the cell reaches a threshold

Figure 9. Fat and cholesterol synthesis from carbohydrates and fatty

acids, and importance of malonyl-CoA. CPT: carnitine

palmitoyltransferase, DAG: diacylglycerol, LCFA: long

chain fatty acid.  Dotted arrows denote inhibition.
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Let us consider the issue of malonyl-CoA causing

insulin resistance over skeletal muscle from another

point of view. The favorable effects of physical

activity on insulin resistance are well known (120,

121). AMP amount increases with the use of ATP

following exercise. The increase in the AMP/ATP

ratio causes the stimulation of AMP activated protein

kinase (AMPK) (120, 122). AMPK phosphorylates

ACC at least at three serin residues (122, 123).

Phosphorylation engenders marked ACC inactiva-

tion, and reduced sensitivity of the enzyme to the

allosteric activator effect of citrate (124). The ACC

isosymes of the liver, fat tissue, heart and skeletal

muscle are identical and are influenced by AMPK

phosphorylation (137). Even the minimal changes

in ATP concentrations will influence AMP and

therefore the AMPK enzyme (125) (Figure 11). As

a result, the AMPK-ACC connection functions as

another sensor-effector that informs the cell of the

changes in adenylate load (126). These changes in

skeletal and heart muscle are actually compensatory;

they give an alarm in the case of decreased ATP

and enhance the generation of ATP. AMPK activation

in liver not only causes an increase in fatty acid

oxidation through the mechanism connected with

malonyl-CoA, but also it reduces the rate of fatty

acid and cholesterol biosynthesis (127). Besides,

AMPK regulates similar adaptive changes in muscle

during the periods of hypoxia, ischemia and exercise

sensitive to malonyl-CoA inhibition (113). A small

portion of the malonyl-CoA present can be effective

in the inhibition of CPT1 (113, 114). High concen-

trations of malonyl-CoA in the presence of insulin

and glucose limit the transition of LCFA-CoA into

the mitochondria and increase the amount in the

cytosol and the conversion to glycerolipids (in

many insulin resistance conditions, the amounts of

triglyceride, diacylglycerol, and LCFA-CoA are

increased)114 (Figure 4).

The effects of the decrease in malonyl-CoA concen-

trations on lipid metabolites and insulin resistance

have attracced little attention. The acute decrease

in skeletal muscle malonyl-CoA level with exercise

enhances the response and sensitivity to the stimulating

characteristic of insulin on glucose transport and

glycogen synthesis (115). The accumulation of

cytosolic LCFA-CoA is the common feature in

insulin resistance whether originating from malonyl-

CoA or free fatty acids or especially in association

with the increase in both of them (116) (Figure 4).

The accumulation of LCFA-CoA causes one or more

protein kinase (PKC) activations by increasing the

concentrations of DAG, phosphatidic acid, and

triglyceride (117). PKCs inhibit glycogen synthase

and insulin receptor through phosphorylation (118)

(Figure 10). With the increase in hexosamine

synthesis, the amount of LCFA-CoA is responsible

in another manner for insulin resistance developing

in muscle and fat tissue during the hyperglycemia

period (119).

Figure 10. Proposed mechanism for glucose-induced phosphorylation

of the insulin receptor. DAG: diacylglycerol, IR: insulin

receptor  (Adapted from reference 109).

Figure 11. Interrelation between fatty acid production and oxidation

over malonyl-CoA in relation to glucose availibility and

energy expenditure. ACC: Acetyl-CoA carboxylase, AMPK:

AMP activated protein kinase, CPT: carnitine palmitoyl-

transferase, FAS: fatty acid synthase. Dotted arrows

denote inhibition (See references 100, 105, and 116 for

further details).
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markedly prevents the oxidation of fatty acids (141).

Because the expression of the FAS enzyme is weak

in the cardiomyocyte, (140, 142). following a compen-

satory increase in the amount of malonyl-CoA

decarboxylase, another enzyme responsible for the

degradation of malonyl-CoA, provides adequate

activation of CPT1 by means of reducing cytosolic

malonyl-CoA level (143). However, in the case of

excessive malonyl-CoA production the elimination

capacity of this system cannot suffice (144). Conse-

quently, reduction in the oxidation of fatty acids

and the accumulation of cytosolic LCFA-CoA can

cause signaling defects and alterations in the ion

equilibrium inside the cell leading to cardiac

rhythm and  function disorders (145) (Figure 12).

During the fetal period, glucose and lactate are

used as the main energy sources (146). Following

birth and during the postnatal period myocardial

energy is obtained via processing LCFAs with

β-oxidation. In the normal adult heart, mitochondrial

fatty acid oxidation is responsible for most of the

ATP production (147). Childhood cardiomyopathy

and sudden deaths occur by the accumulation of

the intermediary products of LCFAs in cardiomyocyte

(146). Reduction in energy stores as a result of

failure in the oxidation of fatty acids is caused by a

genetic error in the enzymes of mitochondrial fatty

acid oxidation (FAO). Under these circumstances,

the importance of the members of the nuclear receptor 

(128). In the case of glucose excess, ATP increase

and AMP decrease cause the inhibition of the system

dependent on AMPK (120, 126, 128). As a result of

the events, the details of which can be found in the

mentioned references pertaining to the molecular

mechanisms, glucose excess as fuel and a sedentary

life can cause insulin resistance again over ACC

and malonyl-CoA via another important mediator

route120 (Figure 11).

Glucose excess and the heart

Fats are the basic fuels that meet the cardiac

energy need (129). The heart is an organ with the

characteristic of being able to burn in different

fuels the best way at the same time (omnivorous)

(130). At the cardiomyocyte membrane, there is an

interesting situation pertaining to the glucose trans-

porters. The real transporter is the GLUT4 which

is also found in fat cells and is dependent on insulin

(131). Moreover, normal cardiomyocyte also possesses

GLUT1 expression which is found more commonly

in the fetal myocard cell and is not dependent on

insulin and to a lesser extent GLUT3 expression

(132). Thus, via these different transporters, glucose

is provided for the cell at the highest rate.

The pathway that proceeds to glycogen synthesis

over G6P and the glycogen cycle are very active in

the cardiomyocyte (133). Glycogen constitutes 3%

of the cardiomyocyte cell volume in adults and

32% in the newborn (134). In contrast with the liver

and skeletal muscle, heart muscle continues glycogen

synthesis while fasting (135). When needed, glucose

is obtained by means of glycogen undergoing glyco-

genolysis with the aid of glycogen phosphorylase

enzyme (136). Epinephrine and glucagon are potent

stimulators of glycogen phosphorylase (137).  With

these explanations, it has been attempted to emphasize

that the cell makes the necessary arrangements to

ensure a strong flow of glucose, one of the fuels,

into cardiomyocyte.

During rest and normal exercise, the predominant

energy source in the mammal heart is LCFAs

(138). The CPT1 enzyme needs to be activated so

that LCFAs can enter the mitochondria and be

oxidized in the heart (139). In cardiomyocyte,

CPT1 is subject to a strict malonyl-CoA inhibition

(140). The increase in the amount of malonyl-CoA

Figure 12. Proposed mechanisms leading to cardiac dysfunction in

carbohydrate excess. ACO: acteyl-CoA oxidase, CPT:

carnitine palmitoyltransferase, FAO: fatty acid oxidation,

FAS: fatty acid synthase, GPAT: glycerol-3-phosphate acyl

transferase, LCFA: long chain fatty acid, OB-Rb: long

form of leptin receptor. Dotted arrows denote inhibition

(See references 130, 131, and 134 for further details).
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Diets rich in carbohydrates and cancer

Histologically, the expression of enzymes respon-

sible for fat synthesis is low in breast tissue (160).

Marked increases of especially FAS and the other

lipogenic pathway enzymes are detected in cancers

of the breast in particular and of the colon, prostate,

thyroid, and endometrium (160-163). Two distinct

mechanisms can be proposed pertaining to this topic.

Chronic active involvement of the lipogenic pathway

can cause cellular signaling alterations described

above and adverse genetic arrangements done by

cytosolic fat metabolites (160). Another argument

is that the lipogenic pathway is activated in the

abundance of glucose coming as fuel to the cancer

tissue with increased vascularity (160). The abun-

dance of fuel that will maintain lipogenesis in both

pathways seems to be important in the develop-

ment of cancer. Besides, it is thought that insulin, a

cellular growth factor, could trigger neoplasia alone

or in association with insulin receptor alterations in

high insulin levels (164). 

It has become clear that the use of FAS inhibitors

shows cytotoxic effects in breast cancer (165).

However, the continuation of cytotoxicity when

fatty acid supply is provided together with FAS

inhibitors has established the fact that the effect

brought about is not associated with the prevention

of fatty acid synthesis. With the use of FAS inhibitors,

accumulation of malonyl-CoA, the substrate in the

previous step, will occur. It has been clarified that

the accumulated malonyl-CoA amount is responsible

for the cytotoxicity by detecting the reduction in

cytotoxicity when the inhibitor of ACC, the enzyme

responsible for the production of malonyl-CoA, is

given together with FAS inhibitor (165). That is,

malonyl-CoA accumulating with increased synthesis

in the abundance of glucose acts as a toxin that

could even cause cell death unless its concentration

is diminished inside the cell by means of further

metabolizing.

Certain arrangements should be made in order to

prevent malonyl-CoA from accumulating and

showing toxic effects inside cells that encounter

glucose chronically exceeding the metabolic need.

As a result of the mechanisms that are widely

explained above, glucose causes overexpression of

various molecules exceeding the need, FAS being 

family becomes apparent in the transcriptional

control of the genes responsible for coding cardiac

FAO enzymes (148).

PPARα activates the transcription of FAO enzyme

genes (149). PPARα inhibition as a result of glucose

increase causes reduction of mitochondrial FAO
enzymes (145, 149). Thus, the accumulation of the

intermediary products of LCFAs prepares the

setting for ventricular rhythm disorders similar to
those seen in myocardial ischemia and in patients

with cardiomyopathy originating from congenital

FAO errors (145).

Apoptosis developing from the activation of the

ceramide pathway, presented as a general principle

in the introduction, as a result of the accumulation

of triglyceride and the other fatty acid metabolites
inside the cell is also valid for cardiomyocytes

(150). Apoptotic cardiomyopathy and heart failure

triggered by the accumulating palmitate with the
inhibition of CPT1 can ensue (151) (Figure 12).

Diets rich in carbohydrates and athe rosclerosis

As a result of chronic diets rich in carbohydrates and
poor in fats (DRCPF), the setting for atherosclerosis

is being prepared with the changes described above

in adipocyte, pancreatic β-cell, hepatocyte, skeletal
muscle cell, and cardiomyocytes. The basic parameters

of the metabolic syndrome such as hyperinsulinemia,

an increase in the synthesis of fatty acids and
cholesterol by DNL causing atherogenic dislipidemia,

and insulin resistance take place. Obese adipocyte

secretes angiotensinogen, (152) atherosclerotic coa-

gulative factors and factors that increase vascular
reactivity such as angiotensin (AT) II, (153) plas-

minogen activator inhibitor 1 (PAI1), (154) and

tissue factor (155). Insulin prepares the infrastructure
for hypertension and atherosclerosis via retaining

salt and water, causing the activation of the sympathetic

nervous system, (156) and enhancing vascular tonus
as the vascular growth factor (157). Moreover,

insulin causes the increase of the vascular AT1

receptor gene expression (upregulation) by means
of post-transcriptional mechanisms (158). In addition

to vascular reactivity increase, vasoconstriction

and the activation of coagulation pathways to athero-

genic dislipidemia engenders hypertension and pre-
mature atherosclerosis. The details of this subject

matter can be found in the literature (159).
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6. Heart muscle works continuously and shows

contraction differences in changing conditions.

Especially failing to perform fatty acid oxidation
adequately which is the basic fuel of the post-

absorbtive period in DRCPF engenders metabolic

ischemia years before atherosclerotic mechanica l

plugging ischemia. Moreover, rhythm disorders
can ensue as a result of the ion and signaling

alterations caused by fatty acid metabolites

inside the cell. In the long term, the outcome can

be heart failure as a result of cardiomyocyte loss
originating from lipotoxic apoptosis.

7. Atherosclerosis and the complications related to

it will be inevitable in the abundance of predisposing

factors such as atherogenic dislipidemia, hyper-
insulinemia, protein acylation and oxidative

metabolite accumulation resulting from DRCPF.

8. A neoplastic process might be started in susceptible
cells as a result of DRCPF which leads to the

overproduction of some proteins (overexpression)

with the compulsive effects of glucose and

non-oxidized fatty acid metabolite on the genetic
material.

Novel treatment approaches

1. Rearrangement of the diet composition

a) Withdrawing refined carbohydrates from the diet
which form the basis of modern nutrition and are

high in glycemic index (167, 168). 

b)Instead of these, heading towards carbohydrate

sources processed to a lesser extent and rich in
fibers having a low glycemic index.

c) Offsetting the daily energy gap originating from

diminished carbohydrates by means of novel

balanced increases in proteins and fats (169).

d)Mixed fats and adequate cholesterol amounts

should be provided in order not to increase the

production of endogenous saturated fatty acids

and uncontrolled cholesterol synthesis resulting
from the impairment of biologic biofeedback

functioning between fat and cholesterol intake

with the diet and endogenous fat and cholesterol

synthesis.

2. In people not performing exercise for a long

time, heavy exercise increases glycogenolysis

leading to the prevention of fatty acid oxidation 

the most conspicuous one. Glucose achieves this

through its direct effects on the genetic material

and by exerting chronic stimulating effects with

the mediation of insulin and transcription factors.

Thus, it can be speculated that chronic stimulations

caused by glucose excess as fuel can engender
neoplastic transformation in cell types that have a

genetic predisposition.

Results

1. DRCPF causes increased fat synthesis and

storage by means of substrate abundance in

lipogenic organs, stimulation of essential enzymes

for metabolic pathways, and by providing genetic
arrangements (=obesity).

2. In DRCPF, with the biochemical inhibition

occurring in the oxidation of fats taken in small

amounts in mixed diets, this important fuel

increases fat storage instead of giving energy.

3. Fatty acids, the oxidation of which is prevented

by DRCPF, cause an increase in the generation

of metabolites such as DAG and PA in the cell
and these metabolites cause insulin and leptin

receptor resistance by means of impairing signal

transport as a result of interactions with molecules

(such as protein kinase C, JAK, STAT) mediating

message delivery inside the cell.

4. As a result of the difficulty of glucose access

into the cell originating from insulin resistance

encountered following DRCPF, substrate defi-
ciency will ensue consequently inside the cell to

be oxidized although there is plenty of fuel in

the blood. Failure to supply chemical energy in

fuel abundance can cause chronic fatigue

syndrome which is an important problem and the

etiology of which has not been establihed.

5. ACC and FAS enzyme expressions have been
detected in brain neurons, (166) this means that

the malonyl-CoA metabolism is active in the

brain. The brain, the most important organ where

glucose can be transported without need for insulin,

incurs the toxic effects of the increased malonyl-

CoA concentration in fuel abundance resulting

from DRCPF and stays in a chronic hyperstimulated

state. This might be setting the stage for the
neuropsychiatric disorders increasing enormously

in developed countries.
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mediated by glucose and malonyl-CoA (170, 171).

Hence, through organizing mild exercise programs,

the favorable effects of enhanced fatty acid oxidation

on obesity and the other parameters of metabolic

syndrome must be utilized.

3. I believe that providing control of the ACC

enzyme activity responsible for malonyl-CoA

synthesis will constitute an important choice of

treatment for metabolic syndrome. In animal

studies, the perfusion of 5-aminoimidazole-4-

carboxamide 1-β-D-ribofuranoside (AICAR) causes

ACC phosforylation (ACC inhibition) with the

activation of AMPK (172). This leads to reduced

malonyl-CoA and consequently to increased fatty

acid oxidation (173, 174). To state it more clearly,

administering AICAR will increase fatty acid

oxidation as if a resting muscle was doing mild

exercise (174). Therefore, using this synthetic

AMPK activator, or the pharmacologic develop-

ment of natural ACC inhibitors found in the daily

nutritional foods people consume would provide a

novel, potent and metabolically effective method

for the treatment of obesity and metabolic syndrome.
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